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Abstract

In this paper we use a semi-parametric procedure, developed by
DiNardo et al (1996), to estimate the distribution of the racial wage
gap in the US and to examine the extent to which the forces under-
lying this wage gap vary throughout the distribution. In carrying out
our analysis, we focus on recent work by Neal and Johnson who argue
that one test score explains much of the average racial wage gap for
men. Our results show that the wage differential varies signiÞcantly
throughout the distribution. Furthermore Neal and Johnson�s conclu-
sion appears to be driven by forces working at the upper end of the
distribution
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1 Introduction

Over the last twenty years several studies have attempted to estimate the
proportion of the racial wage gap which can be attributed to discrimination.
The vast majority of these papers have used the procedure developed by
Blinder (1973) and Oaxaca (1973). This procedure uses the fact that the
OLS regression line passes through the mean of the data to decompose the
average wage gap into a component due to differences in characteristics and
a residual component. The residual is often interpreted as discrimination.
While this decomposition is useful for looking at the mean wage gap it tells
us nothing about what is happening at other parts of the distribution. For
example an average wage differential of 10% is consistent not only with a
situation where all blacks are underpaid by 10% but also with one in which
half of the black workers are underpaid by 20% and the other half receive
the same wage as white workers. Furthermore we might be interested in
knowing if the same factors account for the differential at different parts of
the distribution.
In a recent study DiNardo, Fortin and Lemieux (1996) developed a semi-

parametric procedure for estimating counterfactual distributions. They used
this procedure to account for changes in wage inequality over time. In this
paper we use this approach to estimate the distribution of the racial wage gap
in the U.S., and also to examine the extent to which the forces underlying
this wage gap vary throughout the distribution. Jenkins (1994) developed an
alternative approach for analyzing the distribution of the wage gap. However,
this procedure restricts the estimated parameters of the wage regression to be
the same throughout the distribution. Recent work by Bonjour and GerÞn
(1997) used a procedure developed by Donald, Green and Paarsch (1995) to
look at the gender gap in Switzerland, while Gardeazabal and Ugidos (2000)
used quantile regressions to examine the gender wage gap in Spain. The
advantage of the approach developed by DiNardo et al over these techniques
is that it requires fewer parametric restrictions. In carrying out our analyses
we pay particular attention to recent work by Neal and Johnson (1996) who
argue that �one test score explains .. much of the [racial] gap for men�. We
show in our paper that the wage differential varies signiÞcantly throughout
the distribution. Furthermore Neal and Johnson�s conclusion appears to be
driven by forces working at the upper end of the distribution.
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The next section explains the procedure we use to estimate the counterfac-
tual distribution of wages. Section 3 describes the data used in our analysis,
while section 4 examines the role of skills in explaining the distribution of
the black-white wage gap. In section 5 we examine possible explanations
of our Þndings and see whether these are compatible with some traditional
theories of discrimination. Section 6 concludes.

2 Estimating Counterfactual Distributions

A key component of the traditional Blinder-Oaxaca wage decomposition is
the estimation of the wage of the average black-worker when paid according
to the white wage structure. In this paper we estimate a similar counter-
factual , for the entire distribution, not just at the mean. To estimate this
counterfactual distribution one could simply use the white distribution of
earnings. However since white workers may not have the same distribution
of characteristics as blacks, this may not be appropriate. If for example
blacks were lower skilled than whites, then we should reweight the white
sample so that low(high) skilled whites receive a high(low) weight. This is
the intuition behind the estimator proposed by DiNardo et al (1996).
Let R denote race, R = B denotes black and R = W denotes white and

assume that wages depend only on a composite measure of skill, which we
denote by t. The relationship between skill and wages can differ for black
and white workers. To Þnd the black wage distribution when black workers
are paid according to the white wage structure, we can view each individual
observation as a vector (w, t, R) consisting of a wage w, a level of skill, t, and
an indicator for race. The density of wages for a particular race, fRR(w),
can be written as the integral of the density of wages conditional on skill t,
fR(w|t) over the distribution of skill fR(t):

fRR (w) =

Z
fR (w | t) fR (t) dt (1)

Since we want to estimate counterfactual wage distributions it is impor-
tant to distinguish between the wage structure of a particular race fR (w | t)
and the skill level associated with that race, fR (t). If we assume that paying
blacks the same wages as whites for each level of skill does not alter the white

3



wage structure fW (w | t), then the counterfactual density fWB (w) is given
by:

fWB (w) =

Z
fW (w | t) fB (t) dt =

Z
fW (w | t) fW (t)ψ (t) dt (2)

where ψ (t) is the re-weighting function, deÞned as dFB (t) /dFW (t). FR (t)
is the cumulative distribution function corresponding to the density fR (t).
fWB (w) represents the counterfactual density, the density that would

have prevailed if black individuals (or individuals with black skills) had been
paid according to the white wage structure. fWW (w) represents the white
density, and has been deÞned in (1). From equation (2) we can see that the
counterfactual wage density is the white density adjusted by an appropriate
weighting function. The weight ψ(t) represents the ratio of the probability
that you have skill level t given that you are black to the probability that
you have skill level t given that you are white. If for instance more white
people were highly skilled then this ratio would be less than one and these
people would get a low weight in the density estimation. Once the weight is
calculated we can use it to estimate the counterfactual density by weighted
kernel methods:

fWB (w) =
1

nw

X
iεwh

1

h
ψ(ti)K

µ
w −Wi

h

¶
(3)

where NW is the set of white individuals in our sample, nW is the number
elements in this set, K() is the kernel function and h is the bandwidth.
Throughout this paper we assume a Gaussian Kernel and the bandwidth is
chosen using Scott�s optimal bandwidth for the normal density.

3 Data

In this section of the paper we use the above procedure to analyze the dis-
tribution of the black-white wage gap in the U.S.. The data we use are
taken from the National Longitudinal Surveys of Youth (NLSY). The NLSY
is a panel data set that follows 12,686 youths born between 1957 and 1964.
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These data have been used by others (Altonji and Pierret (1997) and Neal
and Johnson (1996)) to examine differences in the average wages of black and
white workers. We extend these papers by examining the entire distribution
of the wage gap. We focus only on male workers. We use wage data from
1993 and drop observations for which the hourly wage is less than $1 per
hour or greater than $75 per hour in 1993. In 1980, NLSY respondents were
administered a battery of ten tests referred to as the Armed Services Voca-
tional Aptitude Battery. These tests examined knowledge of general science,
verbal and mathematical reasoning and job related issues such as auto and
mechanical comprehension. A subset of these tests, namelyWord Knowledge,
Paragraph Comprehension, Arithmetic Reasoning and Mathematics Knowl-
edge are combined to form the Armed Forces QualiÞcation Test (AFQT).1

Neal and Johnson(1996) argue that controlling for differences in the AFQT,
can explain a large proportion of the average black-white wage gap. To allow
us to compare our Þndings with those from Neal and Johnson we restrict
our sample to individuals who were 18 or younger when they took the test.
We adjust the test scores for age effects and standardize the results to have
mean zero and variance 1. After imposing these restrictions we are left with a
sample of 1370 individuals. Summary statistics for this sample are presented
in Table 1.
Table 2 reproduces the central Þndings from the Neal and Johnson study.2

The table reports the results from regressions of the log hourly wage on race,
age and AFQT or education . In keeping with Neal and Johnson we observe
that the AFQT test score explains a large proportion of the average black-
white wage gap. The average differential falls from .26 to .06 when we include
a measure of test scores. The test scores themselves are also highly signiÞcant.
In contrast we see that differences in education do not explain much of the
black-white wage gap even though education is signiÞcant in determining
earnings.

1For a more detailed discussion of the AFQT measure see Cawley et al (1997).
2The results we present here differ slightly from those reported in Table 1 of Neal and

Johnson. They use pooled wage data from 1990 and 1991, whereas the wage data we use
refer to 1993. Nevertheless the main conclusion of their analysis is still evident with these
data.
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4 Distributional Analysis of the Black-White
Wage Gap

In this section of the paper we extend the analysis of Neal and Johnson by
examining the entire distribution of wages. We begin by estimating the log
wage gap at each centile of the wage distribution. The results are presented
in Figure 1. We can see from this that there is signiÞcant variation around
the mean wage gap, which is indicated by the horizontal line at .26. At
the low end of the distribution, the wage gap is as low as .05. This may be
attributable to the compression of the wage distribution due to the minimum
wage. The gap then rises to a high of about .36 at the 30th percentile
and then falls thereafter. There is no strong evidence of a �glass ceiling�,
in that blacks do not appear to be disproportionately excluded from high
paying jobs.3 To test whether these differentials are signiÞcantly different,
we estimated quantile regressions of wages on race for each of the deciles.
The estimation procedure used provides an estimate of the entire variance-
covariance matrix of the system by bootstrapping which can be used to test
restrictions across equations. The null hypothesis of equal differentials at all
deciles was rejected with a p-value close to zero.
In the remainder of this paper we consider the role of test scores in ex-

plaining the wage differential at different points in the distribution. To do
this we use the procedure outlined in Section 2 to estimate the distribution
of wages for a group of workers who are paid according to the white wage
structure and like whites in all other ways except they have black test scores.
To calculate the weights we discretize the test score distribution by dividing
it into quintiles.4 Since whites tend to be overrepresented in the upper
portions of the test distribution this needs to be taken into account when
carrying out the counterfactual. To do this we attach a lower weight to
whites in this part of the distribution. The weight used is the proportion of
blacks in the each quintile of the test distribution relative to the proportion
of whites.

3For a discussion of this topic in relation to gender wage differentials see Albrecht et
al (2000).

4In practice we can use more than one variable and these do not have to be discrete
variables.
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The results from this analysis are presented in Figure 2. Here bb denotes
the cumulative distribution of wages for black workers and ww denotes the
white distribution. wb denotes the counterfactual distribution, namely the
distribution of wages of workers with the black distribution of test scores but
paid according to the white wage structure. Differences between the ww and
wb distributions reßect differences in test scores. Differences between wb and
bb may reßect discrimination or differences in other factors. We return to
the interpretation of these differences in the next section of the paper.
Following Bonjour and GerÞn(1997) we note that the horizontal difference

between bb and ww measures the difference between male and female earn-
ings at different percentiles. This can be decomposed into a wage-structure
and a characteristics effect. We see from Figure 2 that the difference be-
tween the black and the white wage at the upper end of the distribution is
eliminated when we take account of differences in test scores. At the lower
end of the wage distribution, however, the test score component and the
residual component are both important in explaining the wage gap. Figure
3 shows the proportion of the wage gap due to test scores throughout the
distribution. This rises from about 45% at the 30th percentile to over 100%
at the 90th percentile.5 Thus while the work of Neal and Johnson provides
evidence of the importance of test scores in accounting for the average black-
white wage gap, the results in our paper highlight a signiÞcant role for the
residual component at the lower end of the distribution.6

5 Explaining the Findings

One interpretation of the above Þndings is that wage discrimination (deÞned
as unequal expected wages for equal skills - measured here by AFQT scores)

5We have also examined this issue parametrically using quantile regressions of wages
on race and AFQT. The results of this exercise are consistent with the above Þndings
in that the conditional racial wage differential is insignÞcantly different from zero at the
upper end of the distribution. However, the differential is signiÞcantly different from zero
at the lower end of the distribution. Furthermore the null hypothesis of equality of the
the conditional wage gap throughout the distribution is rejected.

6We have repeated this exercise using education to measure the distribution of skills.
The results are shown in Figure 4. In keeping with the Þnding of Neal and Johnson, we
see that education has little effect on the wage gap throughout the distribution.
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is lower at higher levels of the test scores. To examine this issue we rees-
timate the model in Table 2, allowing both the intercept and the slope to
vary by race. The results are presented in Table 3. These show that black
workers receive a lower wage than white workers with the same test score.
However the interaction term on the slope coefficient is not signiÞcantly dif-
ferent from zero, which implies that the level of discrimination is constant
for different values of the test score. Our data suggest, therefore, that the
wage schedules for blacks and whites are parallel yet the counterfactual wage
distribution converges to the actual black distribution at high wage levels.
These Þndings can be reconciled by considering a situation where each level
of skill is associated with a non-degenerate distribution of wages. If the black
wage distribution conditional on test scores has fatter tails than the white
distribution then the counterfactual wage distribution will cross the black
wage distribution even if the average wage schedules are parallel.
To see this, consider the case where the probability distribution func-

tion of the white wage schedule is degenerate over its domain: wW (t) :h
tW , t

W
i
→ <. Suppose that the support of the black distribution of skills

is given by
h
tB, t

B
i
where tB < t

W . Let FWB (w) denote the counterfac-
tual distribution of white wages if white workers had black skills. Equiv-
alently, it is the distribution of black wages if they were rewarded on the
basis of the white wage structure. The highest wage a white person will
obtain in the counterfactual distribution is wW

³
t
B

´
, which implies that

FWB

³
wW

³
t
B

´´
= 1. The lowest wage that a white worker will receive

equals wW
¡
tB

¢
, and FWB

¡
wW

¡
tB

¢¢
= 0. The actual cumulative distribu-

tion function of black wages is FBB (w): it is the result of the interaction
between the black distribution of skills and the black wage structure. As-
sume that the black wage schedule is stochastic at the top, and has a large
enough tail, such that there is some positive probability that a black worker
with skills tB will get a wage higher than wW

³
t
B

´
. As a consequence,

FBB

³
wW

³
t
B

´´
< 1. Since the expected black wage for skill level tB is

below the wage for whites, we must have that FBB
¡
wW

¡
tB

¢¢
> 0. The

result is that the black cumulative distribution of wages and the counter-
factual cumulative distribution of wages will cross. For this result to hold,
it is necessary that the black probability density function has a fatter tail
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than the white density function at high levels of t. Figure 5 provides some
evidence that this is the case. This Þgure provides Kernel Density estimates
of the wage distributions for black and white workers at the 90th percentile
of the black distribution of test scores. These graphs suggest that variation
in wages about the mean may be higher for blacks than whites at least at
the upper end of the test score distribution.

A question arises as to how we should view this variation around the
mean. Suppose an individual with a level of skill t receives an income y,
which is a random drawing from a density f(y|t). Differences in stochastic
elements means that people with different characteristics, such as race,are
confronted with different distributions. One could argue that the differences
in the distributions reßect random processes and that we should only concern
ourselves with expected outcomes. However, this does not seem entirely sat-
isfactory. An alternative would be to try and model the processes underlying
our analysis and incorporate these results into the evaluation of the black-
white wage gap. We need a theoretical model which incorporates the fact
that blacks have on average lower test scores than whites, the fact that the
slopes of the wage schedules are equal for blacks and whites but the intercept
is lower for black workers and the possibility that the variance around the
wage schedules is larger for blacks than whites. If we consider the traditional
statistical discrimination models Lundberg and Startz(1983) and Coate and
Loury(1993), we note that a steeper wage schedule induces whites to invest
more in skills than blacks. While our data indicate that whites obtain more
skills than blacks, there is no evidence that this is due to steeper wage pro-
Þles. A recent extension of these models by Lundberg(1991) allows for a
situation in which the slopes of the average proÞles are the same for blacks
and whites and blacks do better at the upper end of the distribution relative
to whites. However in this case the intercepts of the proÞles are equal which
is not consistent with our Þndings.

We could extend these models to allow employers to learn the true pro-
ductivity of their workers over time. In the simplest possible extension we
could have a two period model where a worker�s productivity is completely
known in the second period. This results in two different sets of wage sched-
ules, one for each period. The Þrst period wage schedule looks exactly like
the one in the standard model. The second period wage schedule looks
like the wage schedule that we found empirically. The wage schedule for
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blacks and whites are parallel to each other, the black wage schedule is the
lowest one, and there is more variance around the mean for black workers.
Hence, if, at the time our sample was taken, the productivity of the workers
is known completely, then we have an explanation compatible with our Þnd-
ings within the theory of statistical discrimination. Since our workers are
between 29 and 36 years old, this might not be entirely implausible. Models
of statistical discrimination and learning by employers have recently been
tested by Oettinger (1996) and Altonji and Pierret (1997). They do not
Þnd convincing evidence in favor of the hypothesis that Þrms use race as a
source to discriminate statistically within a model of learning. There are
other models that are potentially consistent with our Þndings, however. For
instance models where social factors affect human capital accumulation can
generate differences in the distribution of skills without requiring differences
in the slopes of the wage proÞles -see, e.g., Aigner and Cain (1977) or Lund-
berg and Startz (2000). Whether these models can be modiÞed in a plausible
fashion to explain the evidence on the variability of wages has not yet been
examined.

6 Conclusion

This paper set out to extend the work of Neal and Johnson by looking at the
black-white wage differential throughout the distribution and examining the
forces behind this differential at each point of the distribution. In keeping
with the Þndings of Neal and Johnson for the average worker, we Þnd that the
AFQT score is important for determining earnings differentials throughout
the distribution. However the estimated effect is particularly pronounced at
the top of the wage distribution where it accounts for all of the differential.
Furthermore we argue that this result is not driven by less discrimination
(deÞned as a situation of unequal wages for equal skills) at the upper end of
the wage distribution. Rather the Þnding reßects greater variation in black
wages around the conditional mean. This raises the question as to whether
the greater risk due to the larger variability of wages around the mean should
count as an additional disadvantage for black workers. To fully understand
the implications of our Þndings it is important to develop a theoretical model
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which is consistent not only with average wage behavior but also the variation
in wages around the mean. We view this as an important source of future
work.
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Table 1: Summary Statistics.

Variable Name Blacks Whites
Log Wage 2.18 2.44
Standardised AFQT -.58 .51
Highest Grade Completed 12.7 13.5
N 467 903

Table 2: Wage Regression with Race Dummy for the Intercept.

Dependent Variable is Log Weekly Wage 1993
n=1370
Black -.26(.03) -.06(.03) -.204(.025)
Age .036(.012) .028(.011) .030(.011)
AFQT .182(.013)
AFQT2 .013(.010)
education93 .074(.001)
R2 .07 .189 .203

Table 3:Wage Regressions with Race dummy and Race interactions for
slope.

Dependent Variable is Log Weekly Wage 1993
n=1370
Black -.07(.03)
Age .03(.011)
AFQT .18 (.017)
AFQT2 .01 (.014)
AFQT*Race -.005 (.034)
AFQT2 ∗Race .003 (.026)
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Figure 1: Racial Wage Gap at each Centile of the Distribution.
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Distribution of Hourly Wages - Test Scores
hourly wage
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Figure 2: Counterfactual Wage Distributions controlling for AFQT scores.
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Figure 3: Proportion of the Wage Differential due to Test Scores
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Distribution of Hourly Wages - Education
hourly wage
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Figure 4: Counterfactual Wage Distributions controlling for Education.
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Figure 5: Conditional Wage Distributions at 90th percentile of the black test
score distribution.
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