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Abstract 
This paper considers the derivation of new demand systems from existing ones through replacing an 
indirect utility function ),( yU p by })/(,{ jypyyU jj

βγΣ−p , where p is a vector of prices and y 

is income.  This is a generalisation of Gorman translation ),( jj pyU γΣ−p  and will be shown to be 
effective in terms of producing  new demand systems with both good regularity and flexibility 
properties.   
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                                                        I   INTRODUCTION     

 
Gorman (1975) introduced the “translation” device to incorporate extra parameters into utility  
 
functions and demand equations.  If  ),( yU p is the original indirect utility function, where p is a  
 
vector of prices and y is income,  the translated utility function is 
 
                                               ),( jj pyU γΣ−p ,                                                           (1) 
 
where the jγ are the subsistence quantities, y is assumed  jj pγΣ> and summation is over n  
 
commodities.  Gorman showed that if ),( yqi p were the original demand equations, the translated  
 
equations are                                                                
                                                   ijji pyq γγ +Σ− ),(p .                                                  (2) 
                  
 For example, if ),( yU p is the simple homothetic utility function y/P, where P is a weighted  
 
geometric mean of prices, )log(log jj pP αΣ= ,  the demand equations   iii pyq /α=   
 
are translated to the famous Stone-Geary linear expenditure system (LES)   
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The idea of this paper is to replace (1) by the more general translation of ),( yU p to 
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This reduces to (1) if all 1=jβ .   The condition jj py γΣ>  is replaced by  
 
                                     ∑ −> jj ypy jj

ββγ 1
.                                                                             (4)          

  
which will hold for positive jβ if y is not too small.  If a iβ  is negative, iγ  must also be negative.  
 
     This paper is particularly concerned with how generalised translation can produce demand systems  
 
with both good regularity and flexibility properties.  Regularity means that, given appropriate ranges  
 
for the parameters, the indirect utility function complies with the constraints implied by rational  
 
economic behaviour.1  Ideally, this should be possible for all prices and incomes (global regularity), but  

                                                           
1   That is, a consumer maximises direct utility under a budget constraint.  This implies the indirect 
utility function ),( yU p  should be homogeneous of degree zero in income y and prices p, non-
decreasing in y, non-increasing in p, and convex or quasi-convex in p.  These constraints imply 
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should at least hold for all values of these variables relevant to the situation under study.  Flexibility is  
 
also required in that the corresponding demand system, while satisfying regularity, should be able to  
 
model a reasonably comprehensive spectrum of consumer behaviour - so the possible values of income  
 
and price elasticities, which are functions of parameter values,  should not be seriously restricted2.  The  
 
influential ‘flexible functional forms’ approach, employing Taylor series approximations to general  
 
utilitity (or cost) functions, sought systems embodying flexibility and hoped for regularity, but it seems  
 
that often their flexibility depends on their parameters being allowed to take values that contradict  
 
regularity3.  Such models generally cannot test if observed consumption patterns do or do not accord  
 
with economic theory.  The approach in this paper will be to start from globally  regular systems and to  
 
improve their flexibility by generalised translation4. 
     
       Properties of the general translated utility (3) are examined in section 2 and the corresponding  
 
demand system derived.  Income and price elasticities are obtained and presented in terms of the  
 
elasticities of the parent system and the  parameters of the generalised translation.  Section 3 illustrates  
 
these results by  considering a particular case, fairly parsimonious in parameters, that is interesting in  
 
its own right.  Section 4 applies generalised translation to more parameter rich, though still globally  
 
regular, utility functions.   In section 5 the possible application of generalised translation to non- 
 
globally regular utilities is discussed.  Finally, in section 6, connections between generalised translation  
 
and Houthakker’s (1960) indirect addilog system are explored5.  
 
      
              II. TRANSLATED DEMAND EQUATIONS AND ELASTICITIES 
  
 
Let 
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corresponding conditions (aggregation, homogeneity, Slutsky symmetry and negativity) on the demand 
equations.   
2 More formal definitions of flexibility exist, differing in detail.  See, for example, Diewert (1974).  
3 Caves and Christiansen (1980), Barnett and Lee (1985) and Cooper and McLaren  (1992) have 
discussed the difficulty of reconciling flexibility and regularity for such systems. 
4 Of course, there are other approaches to improving regularity properties.  Barnett (1983), Barnett and 
Lee (1985) and Chalfant (1986) reported wider regularity regions resulting from approximations based 
on Laurent, Muntz-Satz and Fourier expansions rather than Taylor series.  Lewbel (1987) and Cooper 
and McLaren (1996) have also proposed systems.    
5  Lewbel  (1985) has already used the term  generalised translation in a paper on incorporating 
demographic effects into demand equations, which was a theme of considerable interest to Gorman.  
But the generalised translation of this paper is so obviously a generalisation of Gorman’s that it seems 
inappropriate to call it anything else. 
 



 4

 
so that the translated utility is ),( zU p .  If   ),( yU p is homogeneous of degree zero in income and  
 
prices, as it ought to be if a valid utility function, it is clear that ),( zU p is also. 
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Assuming the original utility is non-decreasing in income, the derivative of ),( zU p with respect to z  
 
is non negative.  Taking the terms within the chain brackets, equation (4) implies the first and second  
 
terms combined are positive while the third is also positive because, as previously mentioned, iγ and  
 

iβ are presumed to have the same sign.  So the translated utility is non-decreasing in income. 
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So assuming the original utility is non-increasing in prices, the translated utility is also.  Proofs of the 
 
convexity of translated utilities are  more complicated and depend on the forms of the original utilities.   
 
They are provided in Appendix 1 and show that above some income level the translated systems will be  
 
regular.  This corresponds to the situation with Gorman translation.  For example, the simple  
 
homothetic utility function y/P, )log(log jj pP αΣ= , is globally convex in prices, while   
 

ypy jj /)( γΣ− , which gives the LES, is convex  if   
 
                         222 2)( iijji ppy γγα >Σ− .                                                                    (7) 
                          
So although Gorman translation increases flexibility by introducing extra parameters, it may invalidate  
 
regularity at very low incomes.  This has not been seen as a difficulty, because, at least for analyses  
 
with time series data, interest focuses on inferences valid for recent or current time periods and income  
 
tends to increase with time.  The term ‘effective global regularity’ has been applied to regularity  
 
everywhere except  at low incomes6.  Generalisations of (7) for generalised translation can be deduced  
 

                                                           
6 The term seems due to Cooper and McLaren (1996). 
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from the results of Appendix 1 and will appear in later sections.   
 
     From Roy’s lemma the demand equations are  
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where itq  denotes the demand equation from the translated utility.  Also by Roy’s lemma, 
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where ioq denotes the demand function derived from the original utility function.  So 
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or, more tidily,  
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or, in terms of budget shares 
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and ),( ywit p is the budget share of the translated system as a function of p and y, and ),( zwio p is  
 
the budget share of the original system as a function of p and z.  The income, own-price and cross-price  
 

elasticities of the translated system are derived in Appendix 2, in terms of ))( zp,ioE  and ),( zeiko p ,  
 
the income and price elasticities of the original system.  They are: 
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Even if the elasticities of the original system are very restricted, these elasticities are much less so. The  
 
Example of the next section illustrates this. 
 
 
     III  GENERALISED TRANSLATION OF THE CONSTANT BUDGET SHARE MODEL 

 
 
Returning to PyU /= , where )log(log jj pP αΣ= , the original demand equations, in  
 
budget share form, are iiow α= , or constant budget shares.  Income and own price elasticity are unity  
 
and cross-price elasticities are zero.  From (8) the translated demand equations are 
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or, tidily,. 
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It is shown in  Appendix 1  that  this system7 will satisfy effective global regularity if  
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which holds if +=Σ+ iiji βγαα ,1,  and .1−>β   It could even hold for an 0=iα  if 
 

10 << iβ , although that may be purely academic.  Obviously, (10) reduces to (7) if all jβ = 1.   
 
        If (9) is to have much practical value, it should be more flexible than the LES, which it becomes 
 
when all jβ = 1.  The limitations of  the LES include the linearity of all its Engel curves8, its inability  

                                                           
7    This system has been examined in greater detail in Conniffe (2002a), but was not then understood as 
a case of generalised translation. 
8 One of the few generally agreed findings from empirical studies (see, for example, Lau, 1986) is that 
Engel curves, the relationships between expenditure and income at constant prices, are non-linear for at 
least some goods. 
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to cater for inferior goods and the tying of price effects to income aspects of price changes.  In  
 
particular, the ratio of the cross-price elasticities ike  and jke   equals the ratio of income elasticities  
 

iE and jE , and the possibility of complementary goods is excluded.   
  
     From the formula of the previous section for translated income elasticity, dropping, for convenience,  
 
the subscripts indicating translated and original,  
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iE is not generally a simple monotonic function of income.  A commodity  could be a luxury, or a  
 
necessity at different ranges of income,  and could even be an inferior good (for a positive iβ and small  
 

iα ).  However, as ∞→y  the  budget shares (9) tend to constancy and iE  to unity, which is not  
 
unreasonable and is a property of many other demand systems. That Engel curves can take a large  
 
variety of shapes is clear from the demand equation  and the income elasticity, although as ∞→y  
 
they will approach linearity.  
 
        From the formulae of the previous section, the own-price and cross-price elasticities  
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so ratios of cross-price elasticities need not equal ratios of income elasticities.  The compensated price  
 
effect  
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and this can generally be negative or positive, allowing for complements as well as substitutes.  So the  
 
extra n parameters contained in (9), relative to the LES, do substantially increase flexibility9.  Of  
                                                           
9  Pollak (1972) described a class of demand equations of the form ),,/( Wypfq iii =  where W is a 
homogenous function of all prices and income, as exhibiting “generalised separability”.  Because all 
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course, any demand system with just 3n-1 parameters, will fall short of full flexibility if there are more  
 
than a few commodities.  Sometimes, however, parsimony of parameters is desirable, especially if data  
 
are scarce, or observed price ranges do not embody sufficient independent variation to estimate a very  
 
detailed model of interacting price effects.   
 
     
        IV  GENERALISED TRANSLATION OF  LESS PARSIMONIOUS UTILITIES 
 
 
Greater flexibility of price effects can be modelled by generalised translation of a less parsimonious, 
 
but still globally regular, original utility.  Initially, a utility of the form Py / will be considered, where  
 
P is a function of more than n parameters, but is concave in prices.   
    
       It is easy to generate a globally regular homothetic utility function with 2n, or so10, parameters  
 
from two utility functions 1/ Py  and 2/ Py , where 1P  and 2P , both functions of n parameters, are  
 
concave in prices.  Then (Conniffe, 2002b) the sum, product and the reciprocal of reciprocals  
 
(harmonic mean) are also globally regular utility functions.  For example, with j

jpP αΠ=1 and  
 

jj pP φΣ=2 , with  iα  and iφ positive, the harmonic mean of the utility functions is 
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which is globally regular with 2n – 1 parameters.  It gives the demand system  
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which still, of course, gives a unitary income elasticity, but price elasticities of  
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prices, except ip , take effect through W, there are implied symmetries in how commodity demands  
are affected by prices of other goods.  The LES and the Indirect Addilog System (IAD) of Houthakker 
(1960) are of this class.  But (9) is not, provided the jα  are non zero.   
10 Constraints such as 0=Σ jα  reduce parameters by one. 
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Generalised translation then produces a system with 4n-1 parameters, given by equation (8), with  
 
elasticities given by substituting the above into the formulae of section II.  Many other systems are  
 
obtainable by other combinations of pairs of utility functions.  
 
     Combining simple utility functions is not the only way extra parameters could  have been obtained.    
 
Original homothetic utility functions with more than 2n parameters are quite possible.  For example,  
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could have been taken where the jkξ  are positive and jkξ = kjξ 11.  This has n(n+1)/2 parameters and  
 
gives the demand system 
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with price elasticities  
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In spite of a relative profusion of parameters this system still embodies restrictions on price  
 
effects as  
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is positive if  ikξ  is, so ruling out complimentarity.  So generalised translation, which gives a  
 
system with n(n+5)/2 parameters, will increases the flexibility of price effects as well as income  
 
effects.   The demand equations and elasticities follow from the formulae of section II. 
 
    Appendix 1 shows that for functions of the form Py / , with P  concave in prices,  effective global  
 
regularity holds for the generalised translation  if 
 

                                                           
11 This is actually the homothetic case of the generalised Leontief utility function.  
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where  ε  is  the smallest eigenvalue of  minus the Hessian of log P.  This is the same as (10) with  
 
ε replacing iα / 2

ip .   Although ε  is a function of prices and changes with the observations, it  
 
will be non-zero  if  P is strictly concave.  Then, as before, +iiβγ  and 1−>β  are all that is  
 
required.  An ε  of zero could be compatible with (11) if 10 << iβ .  
 
    There are, of course, globally regular utility functions that are not of the form Py /  and that can  
 
involve even more parameters.  The best known is probably the generalised Leontief 
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which is globally regular if all n(n+3)/2 parameters are positive.  The demand equations are  
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 However, as various authors (Caves and Christiansen, 1980; Diewert and Wales, 1987) have   
 
remarked, these equations cannot represent some behaviourally plausible consumption patterns unless  
 
some parameters are permitted to become negative.   This destroys regularity and  so retaining Leontief  
 
parameters positive and translating to achieve flexibility is preferable.  Appendix 1 shows that the  
 
generalised translation of  (12) is effectively globally regular and the corresponding demand equations  
 
follow from (8) and  (13).   
 
 
V  GENERALISED TRANSLATION OF  NON GLOBALLY REGULAR UTILITIES 
 
 
Although the main theme of this paper commences from globally regular utilities and uses translation   
 
to trade regularity at low income for flexibility and regularity at higher incomes, it is worth considering  
 
the impact of generalised translation on  non globally regular original utilities. Some cases are clear  
 
enough, either in favour or against generalised translation.   
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     A probably favourable case is generalised translation of  Py / ,  with P  a translog  price index       
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This, the homothetic case of the general translog of  Christensen, Jorgenson and Lau (1975), seems the  
 
natural extension of the geometric mean index, jj plogαΣ and its generalised translation nests both  
 
the model of section III and the LES.   However, Py /  cannot be a globally regular utility function.   
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become positive12.   However, perhaps the ‘real world’ prices occurring in the data, and the price  
 
ranges of particular interest for inference, are quite disjoint from these price combinations.  Caves and  
 
Christiansen (1980) reported that regularity of the homothetic translog failed only at high relative price  
 
ratios.  At least for fairly broad commodity definitions, perhaps price ratios may not reach such levels.   
 
Appendix 1 shows that if the iS are positive and the matrix Ξ  of estimated coefficients jkξ  is  
 
negative semi-definite, regularity requires 
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again the same as (10), with iS replacing iα , and the previous conditions applying to the β  and  
 
γ parameters..  From (8) the translated demand equations are  
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and even without examining price elasticities, it is clear there is much more scope for cross-price  
                                                           
12 Convexity of U with respect to prices would also fail. 
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effects than with the system (9), although at the cost of  n(n-1)/2 extra parameters. 
 
     Some non globally regular systems cannot be improved by generalised translation. The AIDS model  
 
of Deaton and Muellbauer (1980a)  
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This cannot be regular unless y is small, because B must decrease (and U increase) for prices with 
 
the negative bj implied by 0=Σ jb .  Furthermore, convexity in prices demands that 
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be positive for all i, but it obviously becomes negative as y increases, particularly rapidly if ib  is  
 
substantially negative 14.   Clearly, if the original utility function loses its regularity with increasing  
 
income, the translated utility will also do so.  Similar difficulties arise for some other demand systems,  
 
for example, Cooper and McLarens’ (1992) MAIDS model15 and for various ‘rank 3’ systems such as  
 
that of Ryan and Wales (1999).      
 
 
VI    GENERALISED TRANSLATION AND THE INDIRECT ADDILOG SYSTEM 
 
 
 There is another way of looking at generalised translation that can also commence from Gorman 
 
Translation.  Gorman translation, can be thought of as producing weighted averages of interpretable  
 
budget shares.  Applied to the constant budget share model it gave the LES 

                                                           

13 Strictly, kj
j k
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linearity for estimation simplicity, this is often approximated by j
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j pwP loglog * ∑= . 

14 These are not original comments (see, for example, Cooper and McLaren , 1992). 
15 This modification of AIDS maintains regularity longer as income increases, but eventually loses it. 
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which textbooks  (e.g. Deaton & Muellbauer, 1980b, p.145) often interpret as giving a consumer’s  
 
budget shares as a weighted average of a “rich person’s”  (constant budget share model) and  a “poor  
 
person’s” (Leontief, or constant ratios of quantities model) budget shares.  Similarly, the generalised  
 
translation of the constant budget share model in section III gave 
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is the budget share of Houthakker’s (1960) indirect addilog system.  So iw  can be seen as a weighted  
 
average of a ‘rich’ person’s and an ‘IAD’ person’s budget shares, since   
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This way of viewing things helps explain of why generalised translation can give such a range of  
 
shapes of Engel curves, even when applied to a constant budget shares model , because Somermayer  
 
and Langhout (1972) demonstrated the great range of  Engel curves arising from the IAD alone. 
 
More generally, (8)  
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is a weighted average of the original system’s budget share  and the IAD budget share16.   
 
 
           In Gorman translation ),( jj pyU γΣ−p  the jγ are sometimes interpreted as subsistence  
 
quantities and jj pγΣ  as subsistence income.  While the translation parameters jγ do not have to be  
 
understood in this way, the  interpretation is sometimes attractive and useful.  With generalised  
 
translation the analogue of subsistence income jj pγΣ  is  
 

                                       
j

y
p

y j
j

β

γ∑ 







,                                                                                                                                

 
which requires a wider interpretation than just subsistence income.  For one thing it can change with  
 
income and assuming at least one β is less than unity,  it increases to infinity as ∞→y , with  
 
dominant term 

                                      syssps
ββγ −1

, 
 
where sβ is the smallest of the iβ .  But perhaps it can, at least sometimes, be interpreted as  
 
‘committed’ income with the terms in the summation corresponding to a variety of types of  
 
commitment.  For iβ = 1 say, the ith component of   is ii pγ , so iγ could be taken as a minimum  
 
essential quantity purchased at price ip irrespective of income. For kβ = 0 say, the kth component of   
 
is ykγ , so kγ could be understood as a minimum proportion of income to be spent on commodity k  
 
irrespective of price.   Intermediate interpretations are possible for a β between zero and one.   A β   
 
greater than one, where the commodity fades out of  committed income as income increases, could be  
 
interpreted as a less drastic option than the exclusion at all incomes that setting the corresponding   
 

                                                           
16 The IAD is a generalisation of the (simple) Leontief, to which it reduces if all 1=jβ .  The IAD 
utility can itself be generalised to the generalised addilog:  
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θγ .   

This suggests an even more general translation than (4), via { }yWyU −,p .   But unlike the Leontief 
or IAD, there are difficulties with the regularity of the generalised addilog, which would feed into the 
translated system, which could also be over parameterised.   
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0=γ  would imply.  It is true the case of a negative β and its corresponding γ seems incompatible  
 
with this committed  income notion, but that situation also arises with subsistence income in Gorman  
 
translation  when a γ is negative.   These interpretations (and others) of committed income are all 
 
deducible from the Somermayer and Langhout (1972) interpretations of coefficients of the IAD  
 
demand system, which is unsurprising given that committed income is the product of y and the IAD 
 
indirect utility function.  
      
       
 
 
Appendix 1: Convexity of the generalised translations 
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The second derivative with respect to ip and jp , remembering that  
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The Case P/zU =  
 
Matters simplify considerably when the original utility is income divided by a function of prices (which  
 
needs to be concave in prices if U is to be convex).  Then  
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Furthermore 
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and so (A1) and (A2) become 
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These can be rewritten as  
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So the Hessian matrix (with respect to prices ) of the translated utility is (apart from the  
 

P/1 multiplier) z by minus the Hessian matrix of Plog  with respect to prices, which is positive  
 
definite17, plus 'GG , which, is positive semi-definite, where G is the vector with ith term  
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  minus zHH /' , where H is the vector with ith term            
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While  'HH−  is negative semi-definite, the addition to it of the diagonal matrix with ith term 
 

                                                           
17 If P is concave, Plog is concave. 
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gives a nonnegative definite matrix (diagonals positive and principal minors of higher order zero). 
 
So the translated utility is convex with respect to prices if the negative of  the Hessian of log P  
 
multiplied by z minus the diagonal matrix with elements 
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is nonnegative definite.   
 
 
Convexity for the constant budget share model 
 
 
Now let )log(log jj pP αΣ= .  The Hessian of log P with respect to prices is diagonal.  So U is  
 
convex with respect to prices if  
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which is equation (10) of section 3.  If all the jβ are positive, the left hand side is of order 2y , while  
 
the right hand side terms are of order iy β−2  and iy β22− , so since iα is positive the condition holds   
 
provided y (and hence z) is not small.  The first right hand side term is negative if 0 < iβ   < 1, so that a  
 
zero iα might even be compatible with convexity in that situation.  For at least one of the jβ negative,  
 
let sβ be the smallest (most negative).  The greatest power of y in z is then sy β−1 with coefficient  
 

s
ss p βγ  ( sγ is negative if sβ is).  So the left hand side is of order sy β22−  ,  while the right hand  

 
terms are of order siy ββ −−2 and iy β22− and it is clear the critical term is i= s.  Comparing coefficients  
 
of sy β22− , the condition is ss βα − greater than 2

sβ .  This will be true if 0 > sβ  > -1, even if sα is  
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small (or even zero).  So effective global regularity holds18 if +=Σ+ iiji βγαα ,1,  and .1−>β      
 
 
Convexity with P concave in prices 
 
 
The translated utility is again convex with respect to prices if the negative of  the Hessian of log P  
 
multiplied by z minus (A3) is nonnegative definite.  Let the smallest eigenvalue of  minus the Hessian  
 
matrix of log P, that is, the matrix with i,k th  term 
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be ε .  If log P is strictly concave minus the Hessian is positive definite and can be written equal to  
 
Q+ε I, where I is the identity matrix, Q is positive semi-definite andε  is positive.   Then the condition  
 
for regularity is    
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This seems the same as (A4) with ε  replacing iα / 2

ip , but it is actually a much stricter condition.  Its  
 
equivalent,  where sα denotes the smallest iα would have been 
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for all i and not just i=s.  So (A5) probably exaggerates the income required for effective global  
 
regularity, although as  the left hand side is of order 2y  (assuming )+iβ , while the right hand side  
 
terms are of order iy β−2  and iy β22− ,  there is no doubt it will hold as y increases.  Less demanding  
 
conditions could be derived for specific cases of  P.  Again, if ε =0 for some observations (log P not  
 
strictly concave) effective global regularity could still hold if  0 < iβ   < 1, although the case is  
 
probably not of practical interest.  For negative β  the same argument as before gives the condition  

                                    ssp βε −2 > 2
sβ  

 
                                                           
18 The conditions on the jγ and jβ correspond to those for the regularity of the utility function of  the 
indirect addilog system.  The validity conditions of the IAD have been debated in the literature more 
than once, as the exchanges between Gamelatos (1973, 1974) and Somermayer (1974), and between 
Akin and Stewart (1979) and Murty (1982) testify. 
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and again  this will be true if 0 > sβ  > -1.   
 
Convexity with P a translog price index. 
 
 
As before, convexity requires the negative of  the Hessian of log P multiplied by z minus A(3) to  
 
be nonnegative definite.  The negative of the Hessian of Log P is 
 
                                                 Λ+Ξ− LL , 
 
where L is the diagonal matrix with ith element  ip/1 , Ξ  is the matrix of coefficients jkξ  and Λ  
 
is the diagonal matrix with ith element ./ 2

ii pS   If, following estimation of the  jkξ , Ξ  is found to  
 
be concave the convexity requirement becomes  
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This gives the condition of section V.  The condition is the same as (A4) with iS  replacing iα  and  
 
the same arguments apply as regards the required ranges of  iβ and iγ .  But while the iα were  
 
constants, the iS are function of  prices and the validity of the argument depends on their being  
 
positive.                                 
 
 
Convexity with a Generalised Leontief utility 
 
 
It is now necessary to return to (A1) and (A2) to take account of terms that no longer vanish.  However,  
 
much of the previous approach will still apply.  The (translated) utility function is  
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and could be written in the form */ Pz ,  where  
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although *P is now a function of income, as well as prices.  The convexity of the original utility with  
 
respect to prices must imply that that *P is concave in prices and therefore *log P  is also.   
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Although the first term of (A6), which is easily shown to be 
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is of order z/1 .  This will be important later.  Returning to (A1), two of its terms  
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Similarly, terms from (A2) 
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and, from  the remaining term of (A2), 
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Some terms are almost identical to those occurring in the Pz / case, with *P instead of P , and,  
 
as before, can be expressed as following from the sum of a positive definite matrix (minus */ Pz  
 
by the Hessian of *log P ) plus two positive semi-definite matrices minus two diagonal matrices  
 
with diagonal terms 
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It is worth noting that these terms are respectively of order iβ22/1 −  and iβ−2/1  in income.  
 
Turning to the extra terms involved, those in iC and jC  can be seen as following from 
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where L is the vector with elements 
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and C is the vector with elements iC .   The first matrix in (A9) is positive semi-definite.  The second  
 
is negative semi-definite, but becomes positive semi-definite if the diagonal matrix with diagonal terms  
 
 2*2 izCP is added to it.  The same applies to the third term if the diagonal matrix with diagonal terms 
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is added.  These diagonal matrices have to be subtracted again, of course.  
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is negative the matrix is negative semi-definite.  Adding the diagonal matrix with diagonal terms 
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where, of course, 
 

        
1−









−=

∂
∂ i

y
p

p
z i

ii
i

β

βγ      and      
1

2

2 )1(
−








−
−=

∂
∂ i

y
p

pp
z i

i

iii

i

β
ββγ

. 

 
From earlier comments it is clear the terms of (A11), assuming the iβ  positive, are respectively of  
 
order 
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As already said, minus the Hessian matrix of *log P , multiplied by */ Pz , is positive definite in  
 
prices and it is easily seen to be of order z  or y .  So the same arguments as previously will  
 
demonstrate effective global regularity.               
                                        
 
 Appendix 2:   Derivation of income and own price elasticities of  translated systems 
 
 
For convenience of notation, the dependence of quantities on prices and income will not be indicated  
 
explicitly except for z, the translated income. 
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The own-price elasticity is 
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