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Abstract

This paper analyzes a multi-auction setting in which informed strategic agents are endowed

with heterogeneous noisy signals about the liquidation value of a risky asset. One result is that

when the variance of the noise is small the competition between traders takes the form of a rat

race during all the periods of trading. As we increase the level of the noise in the traders’ signals,

a waiting game phase appears and the intensity of the rat race, observed only at the last auctions,

decreases. In sharp contrast with the previous literature, when the variance of the noise is very

large, we only observe a waiting game.
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1 Introduction

Analyzing the strategic trading behavior of informed traders in a dynamic setting is the

focus of a large body of literature in Finance. Different frameworks are used in order to

perform that task. The seminal paper by Kyle (1985) examines the trading behavior of a

single perfectly informed trader. The paper shows that the monopolistic trader will limit

the size of his early trades in order not to reveal too much information too early. This leads

to information being gradually incorporated into prices. That result depends on some cru-

cial assumptions such as the presence of a single informed trader but also on the structure of

the private information i.e. whether it is perfect or not. Holden and Subrahmanyam (1992)

show, to the contrary of Kyle (1985), that the competition resulting from the presence of

more than one informed trader with identical information results in almost all the private

information to be revealed in the early auctions.1 Foster and Viswanathan (1996) analyze

the case of imperfect competition when the traders’ information is correlated. Aggregate

private information gives then the liquidation value of the risky asset. Back, Cao and

Willard (2000) study the competition between strategic traders in continuous time. Both

papers show that the result of the competition between informed traders is very complex

and depends critically on the initial correlation between the informed traders’ signals.

In our paper, we revisit the competition between heterogeneously informed strategic

traders. However, as in Admati and Pfleiderer (1988), we assume that each trader is

endowed with a noisy normally distributed signal about the liquidation value of the risky

asset ṽ. This allows us to know the structure of information of all trades.

Given that framework, we derive the unique linear equilibrium in a multi-auction mar-

ket where traders receive heterogenous signals. It allows us to study the convergence

of prices to the liquidation value of the risky asset, knowing the exact structure of the

heterogeneity in the beliefs of the insiders.

Our article aims at answering the following questions:

1Michener and Tighe (1991), Foster and Viswanathan (1993) find the same result.
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• What dynamic strategies should informed market participants use to maximize their

profits? How does the reaction of the informed agents evolve over time according to

their private signals and prices?

• How quickly does the price adjust to reflect the presence of informed traders?

• How are the insiders’ profits affected by noisy private signals? Can informed traders

reduce competition when they have noisy private signals i.e. can noisy information

be profitable for informed traders?

• Is there an optimal level of noise that maximize traders’ profits?

Considering the effect of the variance of the noise on the traders’ behavior is not equiva-

lent to considering the effect of the correlation between signals. A change in the correlation

between signals only measures the degree to which signals are identical or not. A change in

the variance of the noise in the traders’ signals does not only affect the correlation between

the traders’ signals, but also the correlation of the traders’ signals with the liquidation

value of the asset. Then, changing the level of the noise simultaneously affects the cor-

relation between the traders’ signals and the correlation with the liquidation value of the

asset. Indeed, a large variance of the noise leads to a lower correlation between signals.

This implies a reduction of the level of competition by giving each trader a monopolis-

tic position on his private information and thus prevents competition from destroying his

profits. However, it also implies that informed agents are trading on noise which in turn

reduces their expected profits. This effect is not captured by looking at the effect of the

correlation between signals.

Furthermore, our framework enables us to study the trade-off between noise and compe-

tition in a dynamic setting highlighted in Dridi and Germain (2009).2 When the number of

traders is greater than four and for some values of the noise, they obtain that the traders

get more profits with noisy information than with perfect information leading to noise

2The model of Dridi and Germain (2009) is a particular case of our model corresponding to a static

setting.
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acting as a commitment not to trade. In our paper, we also study that trade-off in a

dynamic setting and, as such competition encompasses two dimensions: one temporal i.e.

the number of auctions and one spatial i.e. the number of informed traders.

Our main results are the following:

• The existence of a linear equilibrium is not always guaranteed. We find that the

trading process continues as long as informed traders retain some private information

not incorporated in the market maker’s information set. We also find that the values

of the noise (measured by the variance of noise in the traders signal) that guarantee

the existence of an equilibrium are limited by the level of competition between traders.

• When the competition is strong (the number of informed traders and/or the number

of auctions is high), increasing the noise in the traders’ private information leads

to higher profits than when that noise is small. In that case, traders can make

more profits with noisy information than with perfect information. However, adding

too much noise in the traders’ signals always decreases their profits. When the

level of competition is not as strong, noise always reduces the profit of the informed

traders. These results generalize the findings of Dridi and Germain (2009) previously

highlighted.

• The optimal noise (i.e. maximizing the informed traders’ expected profits) increases

with the number of traders and with the number of auctions. Moreover, as in Dridi

and Germain (2009) the optimal aggregate profit has a strictly positive finite limit

when the number of traders is large.

• The optimal individual profit has a strictly positive finite limit when the number of

auctions is large.

The highlighted trade-off between noise and competition bears some similarities with

the results put forward by Foster and Viswanathan (1996) and Back et al. (2000) regarding

the level of correlation of the signals and the expected profits of the traders. Indeed, Foster
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and Viswanathan (1996) show that the expected profits of the traders are higher when there

is some positive correlation compared to the case where the signals are uncorrelated. In our

model, we concentrate on the level of noise and noise diminishes the correlation between

private signals. We also show that noise can, in some cases, increase expected profits.

Ostrovsky (2012) highlights that in dynamics models the most important issue is the

aggregation of information. In Foster and Viswanathan (1996) and Back, Cao and Willard

(2000) the dispersed information forms a sufficient statistic and prices converge to the

liquidation value. In our model, prices do not, in general, converge to the liquidation

value of the risky asset. However, we show that, when the number of informed traders

increases indefinitely, prices tend to converge to the liquidation value. Moreover, the rate

of the increase for the price informativeness is lower in our model than in Holden and

Subrahmanyam (1992), as noise slows down the revelation of information.

Both Foster and Viswanathan (1996) and Back et al. (2000) find that market compe-

tition depends on the initial correlation between the informed traders’ signals. When the

correlation is not too strong, the competition has two phases. Firstly, insiders trade very

aggressively and release much of their private information in the earlier trading periods.

This phase is known as the “rat race”. Secondly, since the correlation between the residual

private information of the informed traders evolves over time, after a number of auctions

the insiders’ residual information is negatively correlated between each other. This reflects

a difference of opinion between the informed agents about the final value of the risky asset.

The informed participants then become more reluctant to trade, since each insider could

be on the wrong side of the market. Hence, the trading activity is less intense. This phase

is known as the “waiting game”. During that phase, insiders conceal their private informa-

tion. This phenomenon leads to an adverse selection problem in the market at the end of

the trading day. Hence, the competition between the insiders does not automatically lead

to more efficient prices as one approaches the time of liquidation. We also show that it is

possible to have the reverse sequence of the two stages (first a rat race and then a waiting

game).
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Looking at the trader’s behavior, we obtain the following results. When the trader’s

private information is quite precise (strong correlation between the trader’s signal), the

dynamic competition between traders takes the form of a rat race (where traders trade

very aggressively on their private information) during all the periods of trading. This result

generalizes the findings of Holden and Subrahmanyam (1992), for the range of low levels

of noise.3 However, when the private information is very noisy we only obtain a waiting

game. This result is in sharp contrast to Foster and Viswanathan (1996). Indeed, they

find that the waiting game is followed by a rat race. In this case, the insiders limit their

orders since their private information is noisy. The waiting game observed in our model

is not due to a negative correlation between the signals as a consequence of trading. We

show that, in our model, the waiting game phase appears when the correlation between

the signals of the traders is low - but positive.

Some papers have empirically investigated the competition between informed traders

taking place in financial markets. Ellison and Mullin (2007) find that the information is

gradually incorporated into price confirming the result found in Kyle (1985). Cho (2007)

analyses the behavior of stock prices ahead of earnings announcements. The paper finds

evidence of informed trading. However, the evidence is more consistent with Foster and

Viswanathan (1996) than with Kyle (1985). Our model predicts that changes in volume

during the trading day can be explained by the presence of noise in the information of the

traders when they compete in the market.

The remainder of the paper is organized as follows. Section 2, presents the general

setup. We show in section 3 the existence and the uniqueness of a linear equilibrium

and characterize the different parameters at each auction. In section 4, we study the

informativeness, the market depth and the expected profits according to the level of noise

in the signals of the informed traders, the number of auctions and the number of traders.

Finally, in section 5, we make some concluding remarks. All proofs are gathered in the

3We show that the models of Kyle (1985) (discrete setting) and Holden and Subrahmanyam (1992) are

encompassed in our model leading to the same results for some particular parameters values.

7



Appendix.

2 The Model

We follow, in this paper, the notation of Kyle (1985) and Holden and Subrahmanyam

(1992). We assume that a risky security is traded during N sequential auctions in a time

interval which begins at t = 0 and ends at t = 1. Let ∆t be the time interval between the

nth auction and the previous auction (∆t = 1
N ). At t = 1, the liquidation value of the

asset is revealed. This liquidation value is denoted by ṽ, with ṽ ∼ N(v̄, σ2v). For simplicity

and without loss of generality, we assume v̄ = 0. In each auction, the following market

participants are present:

• M risk-neutral informed traders. At t = 0 each insider i = 1, . . . ,M receives a sig-

nal S̃i = ṽ + ϵ̃i about the liquidation value of the risky asset, where ϵ̃i ∼ N(0, σ2ϵ ),

for i = 1, . . . ,M . Moreover, we assume that the error terms, ϵ̃i, are mutually in-

dependent. Informed participants receive heterogeneous signals as in Admati and

Pfleiderer (1988).

• Several liquidity traders who submit orders at each auction. They do not possess

any information about the fundamental value of the risky asset. We denote by ∆ũn

their aggregate orders and we assume that (∆ũn) are independently and identically

normally distributed with zero mean and variance σ2u∆t. Also, we assume that ∆ũn

and ṽ are independent.

• Competitive risk-neutral market makers who observe the aggregate orders, but who

do not know whether these orders stem from liquidity traders or insiders, and set the

price pn, at each auction n in a Bayesian way.

At the nth auction we denote ∆X̃n as the aggregate order of all informed traders, and

πi,n the total expected profit of informed trader i, for i = 1, . . . ,M , from auction n to

auction N .

8



Each risk neutral informed trader determines his optimal trading strategy by a process

of backward induction in order to maximize his expected profits given his conjectures about

the trading strategies of the other informed traders. We look for a linear equilibrium where

each informed trader chooses an order which is linear in his private information and the

previous public price.

Competition in market making drives the market makers’ expected profits to zero,

conditional on the aggregate submitted orders w̃n = ∆X̃n + ∆ũn. Thus, at the nth

auction, pn equals the expected value of ṽ conditional on the information available. The

market makers’ prices are linear in the observed prevailing aggregate order flow and the

previous public price.

3 Equilibrium

Let x̃in be the order of agent i at auction n. Given the linear assumption of the equilibrium,

the order is such that x̂in = (αi,nS̃i + βnpn−1)∆t. After n− 1 periods of trading, trader i

maximizes his remaining expected profit from the nth auction to the last one.

At the nth auction, the market maker receives the aggregate order flow w̃n =
∑M

i=1 x̃in+

∆ũn. Based on this aggregate order flow, the market maker updates, in a Bayesian way,

her estimate of the fundamental value of the risky asset:

pn = E[ṽ|w̃1, . . . , w̃n−1, w̃n] = pn−1 + λnw̃n,

where λn is the liquidity parameter at the nth auction. It is the regression coefficient of

ṽ on w̃n conditional on w̃1, . . . , w̃n−1, the past trades. Hence, the price set by the risk

neutral market makers, at each auction n, pn, is equal to the conditional expectation of ṽ

given the information generated by the aggregate order process up to time t = n
N .

Given the order form and the price function, the trader’s conditional expected profit

can be written as:

E[πin|p0, . . . , pn−1, S̃i] = k1,n−1S̃
2
i + k2,n−1pn−1S̃i + k3,n−1p

2
n−1 + δn−1,
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where all parameters are given in the Appendix as part of the proof of the next proposition.4

This value function is similar to that of Foster and Viswanathan (1996) and Holden

and Subrahmanyam (1992).5

We now introduce the equilibrium concept used in our model. To start, we define the

conditions to be satisfied for a Bayesian Nash equilibrium. Then we restrict our search to

linear Markov equilibrium and conjecture the equilibrium strategies for the market maker

and informed traders.

Just before period n, the information of insider i consists of his own signal S̃i, plus his

own orders (x̃i1, . . . , x̃in−1). In addition, all insiders know the past net trades (w̃1, . . . , w̃n−1).

Let

x̃in = Xin(S̃i, x̃i1, . . . , x̃in−1, w̃1, . . . , w̃n−1),

pn = Pn(w̃1, . . . , w̃n)

represent the optimal strategy of trader i and the optimal strategy of the market maker,

respectively. Finally, let Xi = (Xi1, . . . , XiN ) (for each i) and P = (P1, . . . , PN ) represent

the two vectors of strategy functions. Define the profit that accrues to informed trader i

from period n on as:

πin(X1, . . . , Xi, . . . , XM , P ) =

N∑
k=n

(ṽ − pk)x̃ik.

A Bayesian Nash equilibrium of the trading game is a M + 1 vector of strategies

(X1, . . . , XM , P ) such that (we follow Kyle (1985) and Foster and Viswanathan (1996)

4We assume here that all insiders play their equilibrium strategies, this expression should be modified

if we assume that trader i plays an arbitrary strategy, see appendix for more details.
5In Holden and Subrahmanyam (1992), all insiders have the same signal, ṽ, implying that the value

function of the informed trader i is:

E[πin|p0, . . . , pin−1, S̃i] = αn−1(ṽ − pn−1)
2 + δn−1

We thus obtain this last value function by setting k1,n−1 = k3,n−1 = αn−1 and k2,n−1 = −2αn−1 in

our model. Our proof is similar to the one of Foster and Viswanathan (1996) except that we specify the

equilibrium conditions for heterogeneously noisy signals.

10



closely):

• For any i = 1, . . . ,M , n = 1, . . . , N and for X ′
i = (X ′

i1, . . . , X
′
in, . . . , X

′
iN ), we have:

E[πin(X1, . . . , Xi, . . . , XM , P )|S̃i, x̃i1, . . . , x̃in−1, w̃1, . . . , w̃n−1]

≥ E[πin(X1, . . . , X
′
i, . . . , XM , P )|S̃i, x̃i1, . . . , x̃in−1, w̃1, . . . , w̃n−1].

The optimal strategy function for informed trader i is best no matter which past

strategies i may have been played.

• For all n = 1, . . . , N , we have:

pn = E[ṽ|w̃1, . . . , w̃n].

Also, we define the variance of the price error Σn, a measure of price informativeness,

at auction n:

Σn = var[ṽ|w̃1, . . . , w̃n] (3.1)

The market maker sets prices equal to the conditional expected value given the order

flow.

We look for a linear Bayesian Nash equilibrium based on a dynamic programming

argument. Note that the strategy of informed trader i at auction n is required to be

the optimal strategy, not only when trader i plays his optimal strategy in the first n − 1

periods. Furthermore, as in Foster and Viswanathan (1996), there are no off equilibrium

observations of order flow by the other informed traders in the model as every order flow

path is possible.

We now derive the following proposition which provides the different parameters of the

equilibrium.

Proposition 1 If ΣN > σ2
ϵ
M

6 there exists a unique linear equilibrium with noisy private

information in which the demand function of informed trader i at auction n and the price

6Expressing equilibrium condition as a function of ΣN is equivalent to express the same condition as

a function of Σ0. Indeed, we solve our equilibrium by a process of backward induction i.e. we set the
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function at auction n are respectively equal to:7

x̂i,n = αn∆tS̃i + βn∆tp̂n−1. (3.2)

p̂n = p̂n−1 + λn(∆Xn +∆un), (3.3)

where the parameters are defined by the following equations

αn∆t = −
2(k3n − 1

2k4n)λn − an

(M + 1)λn − 2M(k3n − 1
2k4n)λ

2
n

+
M − 1

M
ψn(1−an)

1− 2λn(k3n − 1
2k4n)

(M + 1)λn − 2M(k3n − 1
2k4n)λ

2
n

,

(3.4)

λn =
Mαn∆tΣn−1

(αn∆t)2M2Σn−1 + σ2u∆t+M(αn∆t)2σ2ϵ
. (3.5)

Σn = var[ṽ|w̃1, . . . , w̃n] =
Σn−1

(
σ2u∆t+M(αn∆t)

2σ2ϵ
)

(αn∆t)2M2Σn−1 + σ2u∆t+M(αn∆t)2σ2ϵ
. (3.6)

with an = Σn
Σn+(1−ψn)σ2

ε
, ψn =Mλnαn∆t and

δn−1 = δn + λ2nk3n[σ
2
u∆t+ (αn∆t)

2(M − 1)(1 + (M − 1)an)σ
2
ϵ ]. (3.7)

Trader i’s value function is given by

E
[
πin

∣∣∣p̂0, ..., p̂n−1, S̃i

]
= k1,n

(
S̃i − p̂n−1

)
+ δn. (3.8)

The coefficients k’s are solving the following system of equations (fully defined in the Ap-

pendix)

kn−1 = Akn + C, (3.9)

where kn−1, kn are matrices of dimension 6× 1, A is a matrix with dimension 6 × 6 and

C is of dimension 6 × 1. All matrices are defined in the Appendix. The parameters are

subject to the following boundary conditions

δN = k1,N = k2,N = k3,N = 0, (3.10)

αN∆t =
aN

λN (2 + (M − 1) aN )
. (3.11)

value of ΣN , then we compute ΣN−1 . . . Σ0. Hence, we can write Σ0 as a bijective function of = ΣN -we

observe numerically that Σ0 is a strictly increasing function of ΣN - and the equilibrium condition could be

interpreted as a condition on Σ0.
7If σ2

ϵ = 0,we are in the Holden and Subrahmanyam (1992) model, the results in this case are presented

in the appendix.
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Proof: See Appendix.

The necessary condition is a learning process condition. It means that the trading

process continues as long as informed traders still have some private information that is

not yet incorporated in the market maker’s information set. It also shows that the precision

of the market maker’s information is limited by the level of noise contained in the traders’

signals. In fact, we know that the market makers’ estimate of the liquidation value can be

written as:

v̂ =
1

M

M∑
i=1

S̃i = ṽ +
1

M

M∑
i=1

ϵ̃i. (3.12)

Suppose that the traders’ signals (S̃i)1≤i≤M are in the information set of the market

maker. In this case, the market maker is able to know the liquidation value ṽ with a

precision measured by the inverse of the variance of the random variable 1
M

∑M
i=1 ϵ̃i. That

precision is then equal to σ2
ϵ
M and represents the best precision of her estimate of the

liquidation value ṽ. The last error variance of price, ΣN , is then greater than σ2
ε
M . As a

consequence, the level of noise, as measured by the variance of the noise σ2ε cannot be too

high.

Moreover, we find, numerically, that if we increase the frequency of trading N , we need

to set lower values of ΣN to maintain the same Σ0.
8 That allows us to deduce that the

frequency of trading is limited by the level of noise. The higher the frequency of trading,

the lower the level of noise. Regarding the effect of the number of insiders M , it is not

as clear. Increasing the number of insiders M decreases the lower bound of the necessary

condition. However, it also intensifies the competition between traders and so lead to lower

values of ΣN . Hence, we cannot deduct analytically the effect of increasing the number of

informed traders.

By proceeding by backward induction one determines the individual orders for each

auction. There is then a link between the last error variance of price ΣN and the initial one

Σ0 at the opening of the sequential auctions market. Choosing Σ0 is therefore equivalent

8This is due to the fact that increasing the frequency of trading intensifies the competition between

traders leading to more information being released and so to lower values of ΣN .
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to setting ΣN at a certain value. To illustrate the properties of our model, we compute

the linear equilibrium parameters for different settings.

All the results in the following sections are obtained numerically.

4 Numerical Results

We now illustrate our model with numerical simulations. In order to compare the different

results we choose similar numerical settings to those of Holden and Subrahmanyam (1992),

Foster and Viswanathan (1996) and Back et al. (2000). The results are simulated for a

fixed initial value of Σ0.

4.1 Informativeness and liquidity

We are interested in how prices aggregate the different pieces of private information held

by informed traders. In the next result, we study the informativeness of prices.

Numerical result 1 When the level of noise in the traders’ signals is low, prices incor-

porate quickly all the traders’ private information. When the signals become noisier the

decay of Σn becomes slower and less information is acquired by the market maker during

trading.

In our model, the conditional correlation between the signals of the informed market

participants cannot be negative. As a consequence, traders trade on the same side of the

market. Nevertheless, that competition is softened as traders have noisy signals. We can

compare our model to that of Foster and Viswanathan (1996) by looking at the correlation

between the signals. The correlation between the informed agents’ private signals, i and j

at time n, is given by:

corr(S̃i, S̃j)n =
Σn

Σn + σ2ϵ
for i ̸= j. (4.1)

It can be seen from this expression that the value of σ2ϵ impacts the correlation between

two signals. This correlation affects the traders’ behavior, which in turn impacts price
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informativeness. However, the variance of the noise also affects the traders’ behavior

independently from its effect on the correlation. Noisier (more precise) signals also implies

that informed agents, ceteris paribus, trade more (less) on noise reducing (increasing) price

informativeness.

In Figures 1 and 2, we represent the error variance of prices over time for different

values of the correlation between the signals of the informed traders (given by σ2ϵ ).
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Figure 1: The error variance of prices (Σn)

over time, M = 2, N = 4, σ2
u = 1, Σ0 = 1.
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Figure 2: The error variance of prices (Σn)

over time, M = 2, N = 50, σ2
u = 1, Σ0 = 1.

Figure 1 shows that the error variance of price Σn decreases more slowly when the

variance of the noise, σ2ϵ , is large. In other words, the noisier the signal the less information

is revealed during the periods of trading. Figure 1 also shows that, when the trader’s

private information is not too noisy, investors reveal more of their private information in

the early auctions whereas the opposite is true when private information is very noisy.

These effects can be explained as follows: when the level of noise is low, traders compete

more aggressively on their private information and so release the largest part of their

information in the early periods of trading, but when the level of noise is high, each trader

prefers to delay his trades and keeps most of his private information to the last auctions.

These effects are shown numerically in Figure 2.

In the next result, we study the liquidity in the market.
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Numerical result 2 The liquidity parameter λn is non monotonic with σ2ϵ . It decreases

over time when the level of noise is low. When the level of noise is large, it increases over

time.
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Figure 3: The liquidity parameter (λn) over

time, M = 2, N = 4, σ2
u = 1, Σ0 = 1.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Calendar time

λ
n

Liquidity parameter over time for different values of σ
ε
2

σε
2 = 0.0004

σε
2 = 5

Figure 4: The liquidity parameter (λn) over

time, M = 2, N = 50, σ2
u = 1, Σ0 = 1.

Figure 3 displays the dynamic of the liquidity parameter as a function of the noise. It

shows that as more information is incorporated into prices, the less aggressively the market

maker prices the asset. It also shows that, when there is a large level of noise in the private

signals, the market maker’s sensitivity to order flow, λn, increases slowly through time.

This is due to the fact that, in that case, informed traders delay their trades to the last

auctions and do not reveal a large part of their private information. Hence, the market

maker cannot learn much about the liquidation value of the asset in the early periods of

trading and she reacts more aggressively to the order flow that appears in the last periods

of trading. These results are shown numerically in Figure 4.

We now focus on the link between the informativeness of prices and the number of

auctions. Figure 5 shows the informativeness of prices for different values of the number of

auctions. In order to guarantee the existence of an equilibrium for the different parameter

configurations, we take σ2ϵ = 0.02.
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Hence, one can observe that for a fixed level of noise, σ2ϵ , the informativeness of prices

increases with the number of auctions.
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Figure 5: The error variance of prices (Σn)

for different values of N , M = 2, σ2
ϵ = 0.02,

σ2
u = 1, Σ0 = 1.
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Figure 6: The liquidity parameter (λn) for

different values of N ,M = 2, σ2
ϵ = 0.02, σ2

u =

1, Σ0 = 1.

Similarly, Figure 6 shows that the adverse selection problem (measured by the param-

eter λn) decreases with the number of auctions as one approaches the end of the trading

day. It also shows that the larger the number of auctions, the higher the price is at the

first auction.

Figures 7 and 8 show the links between the informativeness of prices and the number

of traders, and between the liquidity and the number of traders. One can see that for a

fixed level of noise, the informativeness of prices increases with the number of traders.

Also, we observe from Figure 8 that the liquidity parameter λn decreases with the

number of traders. Then, we conclude that increasing the number of traders or auctions

boosts the competition between traders and so leads to the release of more information to

the market maker.

We now study the reaction of the traders to their private and public information, and

present the different regimes of competition between traders.
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4.2 Competition: The rat race and the waiting game

We are interested in how noise affects the competition between informed traders. In the

next result, we study the reaction of informed traders to their public and private informa-

tion.

Numerical result 3 The informed market participants react more to both their private

and public information as time elapses. When the level of noise is low, the informed traders

react aggressively to their private and public information and increase significantly their

orders in the last periods of trading. The reaction of informed traders becomes less agressive

when the level of noise increases. Hence, when the level of noise is large, informed traders

react less aggressively to their information during all the periods of trading.

These results are shown in Figures 9 and 10.

Figures 9 and 10 show that the informed traders trade gradually more aggressively on

both their private and public information. It can be seen that the more precise the signal

the more aggressive the traders are. This aggressive trading is what we call a rat race.

When the level of noise is low, we observe a rat race during all the periods of trading.
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Figure 9: The reaction of an informed in-

vestor to his private signal (αn) over time,

M = 2, N = 4, σ2
u = 1, Σ0 = 1.
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Figure 10: The reaction of an informed in-

vestor to the prices (βn) over time, M = 2,

N = 4, σ2
u = 1, Σ0 = 1.

As the level of noise increases, the intensity of this rat race decreases. In the presence of

high noise, traders are not aggressive in their trading during the early periods of trading,

we call that a waiting game. However, we still have a rat race in the last periods of

trading. Regarding the traders’ behavior with respect to their private information, this

can be explained as follows. Firstly, as time gets closer to the end of the trading day

informed traders have less scope to use their private information. Secondly, the impact

of their trades has less long lasting effect on the liquidity. The intensity of the traders’

trading decreases with σ2ε (this also includes the traders’ behavior at the late auctions). As

said before, in the early auctions we observe that traders are not comparatively aggressive

in their trading. As the noise in their information is not too high, traders refrain from

trading too early as trading aggressively would lead to their private information being

incorporated in the price early. However, when the level of noise is very high, we only

observe a waiting game. In this case, the high level of noise present in the traders’ signals

reduces the competition between informed traders since expression (4.1) is close to zero

in that case. Indeed, when σ2ε is high, traders have initially more dispersed information

reducing the correlation between the traders signals. This in turn limits the competition
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between traders during all the periods of trading as this conditional correlation remains

low.

The waiting game observed in our model is not due to a negative correlation between

the signals as a consequence of trading. We show that, in our model, the waiting game

phase appears when the correlation between the signals of the traders is low - but positive.

In our model, increasing the level of noise in the traders signals decreases the correlation

between these signals. Then, we have for a high level of noise:

Corr(S̃i, S̃j)n ≈ 0. (4.2)

Hence, in this case, each trader considers that the information from other traders is

completely uncorrelated to the true value of the asset. Therefore, he limits his orders

during the early periods of trading in order to not reveal his private information and waits

for the last periods to submit more significant orders.9

Figures 11 and 12 show that, for low levels of noise, we only observe a rat race during

all the periods of trading: we can see from these figures that the traders’ reaction to their

information increases rapidly during all the periods of trading. We also observe that the

slope of the parameter αn (which measures the intensity of competition) increases during

all the periods of trading and more significantly in the lasts periods. This result generalizes

the findings of Kyle (1985) and Holden and Subrahmanyam (1992) in the case of signals

with low levels of noise.

Figures 11 and 12 also show that, for intermediate levels of noise, we observe a waiting

game that lasts most of the auctions as the trading intensity dramatically increases in the

last auctions. The Figures also show that the intensity of that rat race decreases with the

level of noise. Hence, for very high levels of noise, we only observe a waiting game that

lasts for all the periods of trading.10 The main difference with Foster and Viswanathan

9In this case, we can compare our model to the one of Kyle (1985), since each informed trader considers

other traders as noise traders, and so follows a strategy comparable to that observed in Kyle (1985).
10In fact, we always observe a rat race at the last auctions. However, the intensity of this rat race

decreases with the level of noise and becomes difficult to observe when the level of noise is too high.
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(1996) is the order in which the two game stages can appear.
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Figure 11: Reaction of an informed investor

to his private signal (αn) over time, M = 2,

N = 20, σ2
u = 1, Σ0 = 1.
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Figure 12: Reaction of an informed investor

to his private signal (αn) over time, M = 2,

N = 100, σ2
u = 1, Σ0 = 1.

When we analyze the effect of increasing the number of auctions on the previous result,

we obtain the following results. As an overall, increasing the number of auctions increases

the traders’ aggressiveness in each auction. For a very low level of noise and when increasing

the number of auctions, we still have a rat race during all the periods of trading.11 We also

observe that the intensity of the rat race increases with the number of auctions.12 When

increasing the number of auctions for a high level of noise, a waiting game takes place for

most of the auctions. We also obtain that increasing the number of auctions increases the

intensity of the rat race observed in the last auctions.

When we analyze the effect of increasing the number of insiders on the previous result,

we obtain the following results. For a very low level of noise, we still have one phase only,

i.e. the rat race. The results show that the intensity of this rat race increases with the

11The simulations show that the range of σ2
ϵ for which this result is satisfied becomes smaller and closer

to 0 when the number of periods increases.
12Numerically, we observe higher final values of αn when we increase the number of auctions N , and keep

σϵ constant.
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Figure 13: Reaction of an informed investor

to his private signal (αn) over time, M = 10,

N = 20, σ2
u = 1, Σ0 = 1.
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Figure 14: Reaction of an informed investor

to his private signal (αn) over time, M = 10,

N = 100, σ2
u = 1, Σ0 = 1.

number of insiders.13 We obtain that, for high levels of noise, the competition is distorted

as follows: we have an early and a late rat race with a waiting game occurring between

those two rat races. The intensity of the early rate race increases with the number of

insiders as well as with the number of auctions. It also increases when signals become

more precise (see Figures 13 and 14). The intensity of the final rat race decreases with the

number of traders.

4.3 Profit

In this section, we are interested in understanding how the competition between the insiders

affects their profits.

Numerical result 4 1. The introduction of the noise in the traders’ signals reduces

the profits when the level of the overall competition is low, measured by both the

temporal and the spatial competition i.e. when M = 2 and N < 7, or M = 3 and

N < 3, or M = 4 and N = 1.

13These results are obtained for a range of very low levels of noise, this range gets narrower when the

number of insiders increases.
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2. When the level of competition is high (M = 2 and N ≥ 7, or M = 3 and N ≥ 3 or

M = 4 and N ≥ 2, or M ≥ 5 and for any N), the traders’ profits are non-monotonic

with the level of noise. More precisely, the profits intially increase with low level of

noise and then decrease with it for high value of the noise.
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Figure 15: The individual profit (πi) as a

function of σ2ε for M = 2, the number of

insiders, N = 3, the number of auctions,

σ2
u = 1, Σ0 = 1.
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Figure 16: The individual profit (πi) as a

function of σ2ε for M = 4, the number of

insiders, N = 10, the number of auctions,

σ2
u = 1, Σ0 = 1.

These results can be explained as follows. Introducing noise in the traders’ signals

diminishes the intensity of the competition and so allows the traders to get greater profits

(Figure 16). However, too much noise decreases the trader’s trading intensity in such a

way that traders switch to a waiting game and so diminishes the profits. Noise acts as a

commitment not to trade. When the competition is low (measured by both N and M),

only the negative effect of the noise is present (Figure 15).

4.4 Optimal noise

In this section, we look at the optimal level of noise, σ2ϵ maximizing the informed traders’

expected profit. Our previous results show that the presence of noise in the private signals
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may reduce the level of competition between informed traders. This would lead to higher

expected profits.

Numerical result 5 There exists an optimal level of noise which maximizes the expected

profits of the traders when the number of insiders is relatively high. We show numerically

that this level increases with the number of insiders, that the optimal individual profit

decreases with M and that the optimal aggregate profit converges to a finite positive value

when M increases infinitely.

These results are shown in Figures 17, 18 and 19.
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Figure 17: The individual profit (πi) as a
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u = 1, Σ0 = 1.
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tions, σ2
u = 1, Σ0 = 1.

Figures 17 and 18 show the individual profit for different values of the number of

insiders. We obtain that the optimal level of noise, i.e. the level of noise maximizing the

traders’ expected profit, increases with the number of auctions. We also observe that the

optimal individual profit, computed as the profit obtained from the first auction to the

last evaluated at the optimal amount of noise, decreases with the number of insiders. This

result is similar to the one obtained by Dridi and Germain (2009).
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function of σ2ε for M = 2, the number of in-

siders, σ2
u = 1, Σ0 = 1.

Figure 19 shows that the expected aggregate profit (individual profit aggregated over

the number of traders) does not go to zero when M is large, but instead tends to a finite

positive value. This result is similar to the one obtained by Dridi and Germain (2009).

The next result exhibits the effects of increasing the number of auctions on the traders

expected profits.

Numerical result 6 The optimal level of noise increases with the number of auctions.14

For a fixed level of noise, the individual profits decrease with the number of auctions N

for low levels of noise, whereas it increases with the number of auctions for high levels of

noise. We also obtain that the optimal individual profit converges to a finite positive value

when N increases infinitely.

These results are shown numerically in Figure 20.

The previous result can be explained as follows: as we increase the number of auctions,

the informed traders scope of profit increases. However, when the level of noise is low,

the profit decreases with the number of auctions since, in this case, the traders’ private

14We observe numerically that the optimal level of noise increases with N slower than with M .
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information is quickly incorporated in the price which then converges quickly to the true

value of the asset. When the level of noise is relatively high, less information is revealed

to the market maker and so the price does not converge as quickly to the true value of the

asset allowing the traders to obtain larger profits.

5 Conclusion

This article analyzes the introduction of heterogeneous noisy signals when strategic insiders

compete in a multi-auction market. In this case, when all informed agents are endowed with

signals of the same precision, we derive the unique linear equilibrium and its properties.

We find that the existence of an equilibrium is not always guaranteed. The existence

condition implies a negative relationship between the number of auctions and the noise

in the traders’ private signal. The existence of the equilibrium is guaranteed when the

competition is limited through noisy signals.

Our model also enables us to analyze the trade-off between noise and competition as in

Dridi and Germain (2009). We show that when the competition is strong (the number of

informed traders and/or the number of auctions is high), noisy information can reduce the

competition between insiders and can increase their expected profits. In that case noise

acts as a commitment not to trade.In the case of an intense competition, a low level of

noise reduces the competition between traders and leads to greater profits. For a weak

competition (the number of informed traders and the number of auctions are low), the

introduction of some noise in the traders’ signals always leads to a drop in their expected

profits. We then obtain a result which is similar to Dridi and Germain (2009).

With an intense competition, there exists an optimal level of noise that maximizes the

expected profits of the traders. We obtain that this level increases indefinitely with the

number of traders and the number of auctions. We also obtain, as in Dridi and Germain

(2009), that the optimal aggregate profit has a strictly positive finite limit when the number

of traders is large. Moreover, the optimal individual profit has a strictly positive finite limit
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when the number of auctions is large.

Furthermore, when the level of the noise is small leading to a strong correlation between

signals, the competition between traders takes the form of a rat race during all the periods

of trading. However, as we increase the level of noise, a waiting game phase appears during

the early periods of trading, and the intensity of the rat race of the last auctions decreases.

Hence, when the level of the noise is too large (implying that the correlation is weak) we

only observe a waiting game. This result is in sharp contrast with Foster and Viswanathan

(1996).

Our paper broadly agrees with the findings of Kyle (1985) where the traders gradually

incorporates their information into price. We find that traders trade very aggressively at

the last auction, as in Kyle (1985), however we do observe an auction where they refrain

from trading and even decrease their trading intensity. One empirical prediction of this

model is that changes in volume during the trading day can be explained by the presence

of noise in the information of the traders when they compete in the market. It would

be difficult to test this model empirically as we don’t have access to the profit and the

information of traders in banks. Nevertheless, we could design an experiment where the

level of noise is controlled and the profit of the players measured during the trading game.

6 Appendix

Proof of Proposition 1

The proof involves four steps. We will start by resolving the dimensionality issue (we

avoid the problem of increasing state history with time) when all traders follow their

optimal strategies. In the second step, we resolve the dimensionality issue when one trader

deviates from his optimal strategy, conjecture the value function and then obtain the first

order condition (FOC) that determines the equilibrium. In the third step, we show with

a lemma that, at the equilibrium, the parameters of the demand function for insider i do

not depend on i. In other words, at the equilibrium, all insiders have the same reaction to
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their private information (αn) and to their public information (βn). Finally, in the fourth

step, we derive the insiders’ backward induction program.

Step 1: The Dimensionality Issue

In this section we show how the dimensionality issue is resolved (i.e. we avoid the problem

of increasing state history with time). As in Foster and Viswanathan (1996), we look at

linear strategies for informed traders and learning by the market maker.

Consider trader i who is interested in forecasting the true value of the asset that is not

predicted by the market after n− 1 periods of trading, using his information

(S̃i, x̃i1, . . . , x̃in−1, w̃1, . . . , w̃n−1). By equation (3.4), it can be shown that:

pn = p0 +

n∑
k=1

λkw̃k. (6.1)

Trader i’s order for r = 1, . . . , n− 1 can be rewritten as:

x̃ir = αir∆trS̃i + βr∆trpr−1 = αir∆trS̃i + βr∆tr(p0 +

r−1∑
k=1

λkw̃k). (6.2)

It is then clear that (x̃i1, . . . , x̃in−1) is redundant and the meaningful history for trader i

is just (S̃i, w̃1, . . . , w̃n−1). It is important to note that this only holds when trader i plays

his conjectured optimal strategy in past periods. In developing this result, we exploit the

fact that optimal strategies are functions of the private signal S̃i, and the order flow up to

that point. Thus trader i predicts ṽ − pn−1 as follows:

E[ṽ − pn−1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = E[ṽ − pn−1|S̃i, w̃1, . . . , w̃n−1]

= E[ṽ − pn−1|S̃i − pn−1, w̃1, . . . , w̃n−1]

= E[ṽ − pn−1|S̃i − pn−1]

= an(S̃i − pn−1).

We can then deduce that S̃i − pn−1 is a sufficient statistic for trader i to predict the

value of the asset after n − 1 trading periods. In deriving this result, we first use the

fact that in equilibrium (x̃i1, . . . , x̃in−1) is redundant given (S̃i, w̃1, . . . , w̃n−1). Then, we

use the result that when we project ṽ and S̃i on (w̃1, . . . , w̃n−1) we obtain pn−1, so both
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ṽ − pn−1 and S̃i − pn−1 are independent of (w̃1, . . . , w̃n−1). Trader i is also interested in

predicting the signals of the other informed traders, as they use their signals to submit

orders, which in turn determine market price. Because trader j submits an order of the

form x̃jn = αjn∆tnS̃j + βn∆tpn−1, trader i needs to predict S̃j . This is done as follows:

E[S̃j |S̃i, w̃1, . . . , w̃n−1] = E[S̃j − pn−1|S̃i, w̃1, . . . , w̃n−1] + pn−1

= E[S̃j − pn−1|S̃i − pn−1, w̃1, . . . , w̃n−1] + pn−1

= E[S̃j − pn−1|S̃i − pn−1] + pn−1

= E[ṽ + ϵ̃j − pn−1|S̃i − pn−1] + pn−1

= E[ṽ − pn−1|S̃i − pn−1] + pn−1

= an(S̃i − pn−1) + pn−1.

So (S̃i−pn−1, pn−1) is a sufficient statistic for trader i to predict S̃j , and there is no history-

dependent hierarchy of forecasts. The above discussion shows how the dimensionality issue

is resolved in our model when all traders submit their optimal orders. However, we must

also consider deviations from the optimal strategy by any one trader (keeping the behavior

of other traders fixed). If trader i submits an arbitrary order sequence (x̃i1, . . . , x̃in−1),

which is different from the equilibrium orders (given by equation (3.3)), the sufficient

statistics that we have computed need not be relevant.15 In the next step, we resolve

the dimensionality issue when one trader deviates from his optimal strategy (keeping the

strategies of other traders fixed) and find the necessary and sufficient conditions for the

equilibrium. This finishes step 1 of the proof.

Step 2: Necessary and Sufficient Conditions For Equilibrium.

Suppose that all traders other than trader i play their conjectured equilibrium strategy

and the market maker updates her beliefs using the linear rules described above. Now

consider what happens if trader i has submitted arbitrary orders in the first n− 1 periods

(x̃i1, . . . , x̃in−1). To solve the model in this setting, we first need to construct the following

15In particular S̃i − pn−1 is not orthogonal to (w̃1, . . . , w̃n−1) since pn−1 ̸= E[ṽ|w̃1, . . . , w̃n−1] because

trader i has not played his optimal strategy in the first n− 1 rounds of trading.
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statistics based on trader i’s information from the first n − 1 periods. These statistics

correspond to the outcomes that would have occurred had trader i used the equilibrium

strategy instead of the arbitrary strategy in the first n − 1 periods. For each informed

trader, we recursively define:

ŵin =
M∑
j=1

(αjn∆tS̃j + βn∆tp̂
i
n−1) + ∆un,

p̂in = p0 +
n∑
k=1

λkŵ
i
k,

where ŵin is the order flow that would have occurred in the nth round of trading if trader

i had followed the equilibrium strategy (x̂i0, . . . , x̂in−1) in the first n periods of trading.

Similarly, after n rounds of trading, p̂in is the price that prevails in the nth round of trading

if trader i had followed the equilibrium strategy (x̂i0, . . . , x̂in−1) in the first n periods of

trading.

We can prove by mathematical induction that (ŵik, p̂
i
k) is in the information set of trader i

(S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1). Hence, trader i knows the change in the order flow and

the market maker’s expectation of the liquidation value of the asset.

As in Foster and Viswanathan (1996), the price deviation from equilibrium caused by past

suboptimal play is the additional variable that is needed to summarize the history observed

by trader i:

E[ṽ − pn−1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = E[ṽ − p̂in−1 + p̂in−1 − pn−1|S̃i,

w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = E[ṽ − p̂in−1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]

+p̂in−1 − pn−1 = E[ṽ − p̂in−1|S̃i, ŵi1, . . . , ŵin−1, x̃i1, . . . , x̃in−1] + p̂in−1 − pn−1

= an(S̃i − p̂in−1) + p̂in−1 − pn−1.

Here, we use the fact that p̂in−1 − pn−1 is in the information set of trader i and that

(S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1) can be constructed from (S̃i, ŵ
i
1, . . . , ŵ

i
n−1, x̃i1, . . . , x̃in−1).

30



We also have:

E[S̃j |S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = E[S̃j − p̂n−1|S̃i, w̃1, . . . , w̃n−1,

x̃i1, . . . , x̃in−1] + p̂n−1 = an(S̃i − p̂in−1) + p̂in−1.

Hence, we find that (S̃i − p̂in−1, p̂
i
n−1 − pn−1, p̂

i
n−1) is a sufficient statistic to forecast the

liquidation value and the signals of other traders. Now, we conjecture the value function

of trader i after n− 1 to be:

πin = k1,n−1S̃
2
i + k2,n−1S̃ipn−1 + k3,n−1p

2
n−1 + k4,n−1pn−1(p̂

i
n−1 − pn−1)

+k5,n−1S̃i(p̂
i
n−1 − pn−1) + k6,n−1(p̂

i
n−1 − pn−1)

2 + δn−1.

We also conjecture the optimal strategy of a trader who has played an arbitrary strategy:

x̃ik = αik∆tkS̃i + βk∆tkpk−1 + ζk∆tk(p̂
i
k−1 − pk−1).

One can consider the profit which is realized at the nth auction, and what remains to be

gained from the next auction to the end of trading. This is given below:

E[πin|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = E[(ṽ−pn)x̃in+πn+1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1].

This leads to the following expression

E[πin|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = I + II,

with

I = E[x̃in(ṽ − pn)|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1],

II = E[πin+1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1].

The price at auction n is given by

pn = pn−1 + λn(∆X̃n +∆ũn),

with ∆X̃n = x̃in +∆X∗
n the aggregate order flow from the demand of the ith insider (x̃in)

and from the M − 1 other informed participants (∆X∗
n) at the nth auction.
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Since ∆ũn is independent of ṽ, we obtain

E[∆ũn|p1, . . . , pn−1, S̃i] = E[∆ũn] = 0.

We have already shown that:

E[ṽ|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = an(S̃i − p̂in−1) + p̂in−1. (6.3)

Due to normality, we have the standard formula:

an =
cov(ṽ, S̃i|ŵi1, . . . , ŵin−1)

var(S̃i|ŵi1, . . . , ŵin−1)

=
cov(ṽ, ṽ + ϵ̃i|p1, . . . , pn−1)

var(ṽ + ϵ̃i|p1, . . . , pn−1)
.

Then, we obtain:

E[ṽ|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] =
Σn−1

Σn−1 + σ2ϵ
(S̃i−p̂in−1)+p̂

i
n−1 = an(S̃i−p̂in−1)+p̂

i
n−1,

with an = Σn−1

Σn−1+σ2
ϵ
and Σn−1 = var(ṽ|w̃1, . . . , w̃n−1) being the error variance of price at

the (n− 1)th auction.

We then compute the two terms of the profit I and II

I = x̃inE[ṽ − pn−1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]

−λnx̃inE[∆X∗
n|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]− λnx̃

2
in,

II = E[k1,nS̃
2
i + k2,nS̃ipn + k3,np

2
n + k4,npn(p̂

i
n − pn) + k5,nS̃i(p̂n

i

−pn) + k6,n(p̂
i
n − pn)

2 + δn|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1].

Given that

pn = pn−1 + λn(x̃in +∆X∗
n +∆ũn),

p̂in = p̂in−1 + λn(x̂in +∆X̂∗
n +∆ũn),

we obtain:

p̂in − pn = p̂in−1 − pn−1 + λn(x̂in − x̃in) + λn(∆X̂
∗
n −∆X∗

n)

= p̂in−1 − pn−1 + λnx̂in − λnx̃in + (M − 1)λnβn∆t(p̂
i
n−1 − pn−1)

= [1 + (M − 1)λnβn∆t](p̂
i
n−1 − pn−1) + λnx̂in − λnx̃in.
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The second term II can be rewritten as

II = k1,nS̃
2
i + k2,nS̃ipn−1 + k2,nλnS̃iE[∆X∗

n|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] + k2,nλnS̃ix̃in

+k3,nE[(pn−1 + λn∆X
∗
n + λnx̃in + λn∆ũn)

2|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]

+k4,n[1 + (M − 1)λnβn∆t]pn−1(p̂
i
n−1 − pn−1) + k4,nλnpn−1(x̂in − x̃in)

+k4,nλnx̃in[1 + (M − 1)λnβn∆t](p̂
i
n−1 − pn−1) + k4,nλ

2
nx̃in(x̂in − x̃in)

+k4,nλn[1 + (M − 1)λnβn∆t](p̂
i
n−1 − pn−1)E[∆X∗

n|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]

+k4,nλ
2
n(x̂in − x̃in)E[∆X∗

n|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]

+k5,n[1 + (M − 1)λnβn∆t]S̃i(p̂
i
n−1 − pn−1)

+k5,nλnS̃i(x̂in − x̃in) + k6,n(p̂
i
n − pn)

2 + δn.

The ith informed trader chooses his market order xin that maximizes his future expected

profit. Thus, the first order condition (FOC) implies that:

E[ṽ − pn−1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]− λnE[∆X∗
n|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]

E[k2,nλnS̃i + 2λnk3,npn + k4,n[λn(p̂
i
n − pn)− λnpn]− λnk5,nS̃i − 2k6,nλn(p̂

i
n − pn)

|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]− 2λnx̃in = 0.

Moreover, we can directly derive the second order condition:

λn[1− λn(k3n − k4,n + k6n)] > 0.

Given the linearity of the traders’ market order, the aggregate order flow of the j ̸= i other

informed participants is ∆X∗
n =

∑M
j ̸=i αjn∆tS̃j + (M − 1)βn∆tpn−1, we have:

E[
∑M

j ̸=i αjn∆tS̃j + (M − 1)βn∆tpn−1|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] =

(an(S̃i − p̂in−1) + p̂in−1)(
∑M

j ̸=i αjn∆t) + (M − 1)βn∆tpn−1.

This leads to the following expression for the FOC:
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an(S̃i − p̂in−1) + p̂in−1 − pn−1 − λn(an(S̃i − p̂in−1) + p̂in−1)(
∑M

j ̸=i αjn∆t)

−λn(M − 1)βn∆tpn−1 + k2nλnS̃i + 2λnk3n(pn−1 + λnx̃in + λn[(an(S̃i − p̂in−1) + p̂in−1)

(
∑M

j ̸=i αjn∆t) + (M − 1)βn∆tnpn−1]) + k4nλn[1 + (M − 1)λnβn∆t](p̂
i
n−1 − pn−1)

+k4nλ
2
n(x̂in − x̃in)− k4nλn(pn−1 + λnx̃in + λn[(an(S̃i − p̂in−1) + p̂in−1)

(
∑M

j ̸=i αjn∆t) + (M − 1)βn∆tnpn−1])− k5nλnS̃i

−2k6nλn[1 + (M − 1)λnβn∆t](p̂
i
n−1 − pn−1)− 2k6nλ

2
n(x̂in − x̃in)− 2λnx̃in = 0.

The FOC can be rewritten as:

S̃i[an − 2λn(1− λn(k3n −
1

2
k4n))αin∆t+ λn(k2n − k5n) + λnan(2λn(k3n −

1

2
k4n)− 1)

(
M∑
j ̸=i

αjn∆t)] + pn−1[−an + 2λn(k3n −
1

2
k4n)− (M + 1− 2Mλn(k3n −

1

2
k4n))λnβn∆t

−λn(1− an)(1− 2λn(k3n −
1

2
k4n))(

M∑
j ̸=i

αjn∆t)] + (p̂in−1 − pn−1)[1− an

+(1− an)λn(2λn(k3n −
1

2
k4n)− 1)(

M∑
j ̸=i

αjn∆t) + 2λn(βn + ζn)∆t(λn(k3n −
1

2
k4n)− 1)

−2λ2nβn∆t(M − 1)(k6n −
1

2
k4n) + 2λ2nζn∆t(k6n −

1

2
k4n)− 2λn(k6n −

1

2
k4n)] = 0.

By identification, the coefficients multiplied by S̃i, pn−1 and p̂in−1 − pn−1 must be equal to

zero. This leads to:

an−2λn[1−λn(k3n−
1

2
k4n)]αin∆t+λn(k2n−k5n)+λnan[2λn(k3n−

1

2
k4n)−1](

M∑
j ̸=i

αjn∆tn) = 0.

After some further simplifications we obtain

−an + 2λn(k3n −
1

2
k4n)− [M + 1− 2Mλn(k3n −

1

2
k4n)]λnβn∆t

−λn(1− an)[1− 2λn(k3n −
1

2
k4n)](

M∑
j ̸=i

αjn∆t) = 0,

and

1− an + (1− an)λn[2λn(k3n −
1

2
k4n)− 1](

M∑
j ̸=i

αjn∆t) + 2λn(βn + ζn)∆t[λn(k3n −
1

2
k4n)− 1]

−2λ2nβn∆t(M − 1)(k6n −
1

2
k4n) + 2λ2nζn∆t(k6n −

1

2
k4n)− 2λn(k6n −

1

2
k4n) = 0.
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We then obtain the following relationships for αin, βn and ζn

αin∆t =
an + λn(k2n − k5n)

2λn[1− λn(k3n − 1
2k4n)]

+ an
2λn(k3n − 1

2k4n)− 1

2[1− λn(k3n − 1
2k4n)]

(
M∑
j ̸=i

αjn∆t), (6.4)

βn∆t =
2(k3n − 1

2k4n)λn − an

(M + 1)λn − 2M(k3n − 1
2k4n)λ

2
n

−
λn(1− an)[1− 2λn(k3n − 1

2k4n)]

(M + 1)λn − 2M(k3n − 1
2k4n)λ

2
n

M∑
j ̸=i

αjn∆t,

(6.5)

ζn∆t =
an − 1 + 2λn(k6n − 1

2k4n)− (1− an)λn[2λn(k3n − 1
2k4n)− 1](

∑M
j ̸=i αjn∆t)

2λn[λn(k3n − 1
2k4n)− 1] + 2λ2n(k6n − 1

2k4n)
(6.6)

−
2λn[λn(k3n − 1

2k4n)− 1]− 2λ2n(M − 1)(k6n − 1
2k4n)

2λn[λn(k3n − 1
2k4n)− 1] + 2λ2n(k6n − 1

2k4n)
βn∆t.

The first relationship needs to be solved for the αin parameters. Let us define the following

parameters

a′ =
an + λn(k2n − k5n)

2λn[1− λn(k3n − 1
2k4n)]

, and b′ = −an
2

1− 2λn(k3n − 1
2k4n)

1− λn(k3n − 1
2k4n)

.

Given a′ and b′, the relationship (6.4) between the parameters αi can be rewritten as, for

i ̸= j

αi = a′ + b′(
n∑
j ̸=i

αj). (6.7)

Step 3: The demand of the insiders.

The Lemma below gives the expression of the αi parameters solving that relationship.

Lemma Let a′ and b′ be two real numbers such as for i ̸= j the relationship (6.7) is verified

then, if b′ ̸= −1 for i = 1, . . . ,M :

αi =
a′

1− b′(M − 1)
.

Proof : We have the following M equalities

α1 = a′ + b′(α2 + . . .+ αM ),

α2 = a′ + b′(α1 + α3 + . . .+ αM ),

...

αM = a′ + b′(α1 + α2 + . . .+ αM−1).
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Let t be a real number such that t =
∑M

i=1 αi, by adding the M previous equalities, we

get:

t =Ma′ + b′(M − 1)t,

t =
Ma′

1− b′(M − 1)
.

On the other hand, by considering the difference of the first two equalities we have:

α2 − α1 = b′(α1 − α2).

Hence, we obtain:

α2(1 + b′) = α1(1 + b′).

Then, if b′ ̸= −1, all the real numbers αi are identical.

Therefore, we can conclude for i = 1, . . . ,M :

αi =
a′

1− b′(M − 1)
.

It can be verified that the case where b′ = −1, cannot happen due to the second order

condition.

This ends the proof of the lemma.

By applying the lemma, we find the following expression of αin∆t which is independent of

i:

αin∆t = αn∆t =
an + λn(k2n − k5n)

λn
[
2 + (M − 1)an − 2λn(k3n − 1

2k4n)(1 + an(M − 1))
] .

The expression of βn is given by:

βn∆t =
2(k3n − 1

2k4n)λn − an

(M + 1)λn − 2M(k3n − 1
2k4n)λ

2
n

− M − 1

M

(1− an)(1− 2λn(k3n − 1
2k4n))

(M + 1)λn − 2M(k3n − 1
2k4n)λ

2
n

ψn,

with ψn =Mλnαn∆t .

On the other hand, one obtains the relationship between the error variance of prices at the

nth auction (Σn) and the error variance of prices at the (n− 1)th auction. Indeed:

Σn = var[ṽ|w̃1, . . . , w̃n] = var[ṽ|w̃1, . . . , w̃n−1]−
cov(ṽ, w̃n)

2

var(w̃n)
.
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Hence, one obtains:

Σn = Σn−1 − λncov(ṽ, w̃n) = (1−Mλnαn∆t)Σn−1 = (1− ψn)Σn−1.

Since Σn is positive, we have the following condition:

ψn < 1.

Then, an can be written as:

an =
Σn−1

Σn−1 + σ2ϵ
=

Σn
Σn + (1− ψn)σ2ϵ

.

The error variance of the price at the nth auction, Σn, is equal to:

Σn = var[ṽ|w̃1, . . . , w̃n] = Σn−1 −
(αn∆t)

2Σ2
n−1M

2

(αn∆t)2Σn−1M2 +M(αn∆t)2σ2ϵ + σ2u∆t
,

Σn =
Σn−1(σ

2
u∆t+ (αn∆t)

2Mσ2ϵ )

(αn∆t)2M2Σn−1 + σ2u∆t+ (αn∆t)2Mσ2ϵ
.

The market efficiency condition implies that λn is the regression coefficient of ṽ on w̃n,

conditional on w̃1, . . . , w̃n−1, then:

λn =
αn∆tMΣn−1

(αn∆tn)2M2Σn−1 + σ2u∆t+ (αn∆tn)2Mσ2ϵ
.

This leads to the following expression

λn
Σn

=
Mαn∆t

M(αn∆t)2σ2ϵ + σ2u∆t
.

Since αn∆t =
ψn
Mλn

, one obtains:

λ2n =
ψnΣn − ψ2

nσ
2
ϵ

M

σ2u∆t
.

That yields the following condition:

Σn > ψn
σ2ϵ
M
.

Since Σn ≥ ΣN and ψn < 1, the following condition is sufficient for equilibrium

ΣN >
σ2ϵ
M
.
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Step 4: The backward induction program of the insiders.

Each trader i, for i = 1, . . . ,M , solves his maximization problem:

E[πin|p1, . . . , pn−1, S̃i] = k1,n−1S̃
2
i + k2,n−1S̃ipn−1 + k3,n−1p

2
n−1 + k4,n−1pn−1(p̂

i
n−1 − pn−1)

+k5,n−1S̃i(p̂
i
n−1 − pn−1) + k6,n−1(p̂

i
n−1 − pn−1)

2 + δn−1.

Since each trader uses a backward induction process, we have to find a recurrence relation

between the different parameters:



k1,n−1

k2,n−1

k3,n−1

k4,n−1

k5,n−1

k6,n−1


=



a11,n a12,n a13,n a14,n a15,n a16,n

a21,n a22,n a23,n a24,n a25,n a26,n

a31,n a32,n a33,n a34,n a35,n a36,n

a41,n a42,n a43,n a44,n a45,n a46,n

a51,n a52,n a53,n a54,n a55,n a56,n

a61,n a62,n a63,n a64,n a65,n a66,n





k1,n

k2,n

k3,n

k4,n

k5,n

k6,n


+



c1,n

c2,n

c3,n

c4,n

c5,n

c6,n


.

In order to find the expression of the profit of the ith informed trader, we calculate

E[∆X∗
n|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] and E[(∆X∗

n)
2|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]. They

are given by

E[∆X∗
n|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = (M − 1)αn∆tanS̃i

+(M − 1)[βn∆t+ αn∆tn(1− an)]pn−1 + (M − 1)(1− an)αn∆t(p̂
i
n−1 − pn−1),

and

E[(∆X∗
n)

2|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = E[(M − 1)2(βn∆tn)
2p2n−1 (6.8)

+(αn∆t)
2(

M∑
j ̸=i

S̃j)
2 + 2αn∆tβn∆t(M − 1)pn−1(

M∑
j ̸=i

S̃j)|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1].

It remains to calculate E[(
∑M

j ̸=i S̃j)
2|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]. That expression can
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be written as:

E[(

M∑
j ̸=i

S̃j)
2|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = E[

∑
j ̸=i

S̃2
j + 2

∑
j<k

S̃jS̃k|S̃i, w̃1, . . . , w̃n−1

, x̃i1, . . . , x̃in−1].

We then have

E[S̃jS̃k|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = E[(ṽ + ϵ̃j)(ṽ + ϵ̃k)|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]

= E[ṽ2|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]

= E[ṽ2|S̃i, ŵi1, . . . , ŵin−1, x̃i1, . . . , x̃in−1]

= E[ṽ2|S̃i, ŵi1, . . . , ŵin−1],

and

V ar(ṽ|S̃i, ŵi1, . . . , ŵin−1) = V ar(ṽ|ŵi1, . . . , ŵin−1)−
[Cov(ṽ, S̃i|ŵi1, . . . , ŵin−1)]

2

V ar(S̃i|ŵi1, . . . , ŵin−1)

= Σn−1 −
Σ2
n−1

Σn−1 + σ2ϵ
= anσ

2
ϵ .

Given the above, we get:

E[S̃jS̃k|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = E[ṽ|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1]
2 + anσ

2
ϵ(6.9)

= [an(S̃i − p̂in−1) + p̂in−1]
2 + anσ

2
ϵ .

We then obtain that

E[S̃jS̃k|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = a2nS̃
2
i +(1−an)2p2n−1+(1−an)2(p̂in−1−pn−1)

2

+2(1−an)2pn−1(p̂
i
n−1−pn−1)+2an(1−an)S̃i(p̂in−1−pn−1)+2an(1−an)S̃ipn−1+anσ

2
ϵ ,

and

E[S̃2
j |S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = a2nS̃

2
i + (1− an)

2p2n−1 + (1− an)
2(p̂in−1 − pn−1)

2

+2(1−an)2pn−1(p̂
i
n−1−pn−1)+2an(1−an)S̃i(p̂in−1−pn−1)+2an(1−an)S̃ipn−1+(an+1)σ2ϵ .
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Using the two previous expressions to compute (6.9), leads to:

E[(

M∑
j ̸=i

S̃j)
2|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = a2n(M − 1)2S̃2

i + (1− an)
2(M − 1)2p2n−1

+ (1− an)
2(M − 1)2(p̂in−1 − pn−1)

2 + 2(1− an)
2(M − 1)2pn−1(p̂

i
n−1 − pn−1)

+2an(1−an)(M−1)2S̃i(p̂
i
n−1−pn−1)+2an(1−an)(M−1)2S̃ipn−1+(M−1)[1+(M−1)an]σ

2
ϵ .

This is then used to calculate expression (6.8) and leads to

E[(∆X∗
n)

2|S̃i, w̃1, . . . , w̃n−1, x̃i1, . . . , x̃in−1] = (αn∆tn)
2a2n(M − 1)2S̃2

i

+(M − 1)2(αn∆t(1− an) + βn∆tn)
2p2n−1

+(αn∆t)
2(1− an)

2(M − 1)2(p̂in−1 − pn−1)
2

+2αn∆t(1− an)(M − 1)2[αn∆tn(1− an)

+βn∆t]pn−1(p̂
i
n−1 − pn−1)

+2an(1− an)(αn∆t)
2(M − 1)2S̃i(p̂

i
n−1 − pn−1)

+2anαn∆t(M − 1)2[(1− an)αn∆t

+βn∆t]S̃ipn−1

+(αn∆t)
2(M − 1)[1 + (M − 1)an]σ

2
ϵ .

We calculate the profit of the ith informed trader by substituting x̃in = αn∆tS̃i+βn∆tpn−1+

ζn∆t(p̂
i
n−1 − pn−1) in the expression of the profit, and by identification we obtain the dif-

ferent coefficients:

δn−1 = δn + λ2nk3n
[
σ2u∆tn + (M − 1)(αn∆t)

2(1 + (M − 1)an)σ
2
ϵ ]
]
, (6.10)

40





a11,n = 1,

a12,n = λn(αn∆t)[1 + (M − 1)an],

a13,n = λ2n(αn∆t)
2[1 + (M − 1)an]

2,

a22,n = 1 + λnβn∆t+ λn(M − 1)[βn∆t+ αn∆t(1− an)],

a23,n = 2λnαn∆t[1 + an(M − 1)][1 +Mλnβn∆t+ (M − 1)(1− an)λnαn∆tn],

a33,n = [1 + λn((M − 1)αn∆t(1− an) +Mβn∆t)]
2,

a43,n = 2λ2nαn∆t(1− an)(M − 1)2[αn∆t(1− an) + βn∆t] + 2λ2nβn∆tζn∆t

+2λn(1− an)(M − 1)αn∆t+ 2λnζn∆t+ 2λ2n[(1− an)(M − 1)αn∆tnβn∆t

+(M − 1)ζn∆t(αn∆t(1− an) + βn∆t)],

a44,n = 1 + (M − 1)λnβn∆t+ λn(βn∆t− ζn∆t) + λn[1 + (M − 1)λnβn∆t]βn∆t

+λ2nβn∆t(βn∆t− ζn∆t) + λn[1 + (M − 1)λnβn∆tn](M − 1)[αn∆t(1− an) + βn∆t]

+λ2n(βn∆t− ζn∆t)(M − 1)[αn∆t(1− an) + βn∆t],

a52,n = λn(1− an)(M − 1)αn∆t+ λnζn∆t,

a53,n = 2λ2nan(1− an)(αn∆tn)
2(M − 1)2 + 2λ2nαn∆tζn∆tn

+2λ2n[(1− an)(M − 1)(αn∆tn)
2 + an(M − 1)αn∆tζn∆t],

a54,n = λn[1 + (M − 1)λnβn∆t]αn∆t+ λ2n(βn∆t− ζn∆tn)αn∆t

+λn[1 + (M − 1)λnβn∆t]an(M − 1)αn∆t+ λ2n(βn∆t− ζn∆tn)an(M − 1)αn∆t,

a55,n = 1 + (M − 1)λnβn∆t+ λn(βn∆t− ζn∆t),

a63,n = λ2n[ζn∆t+ (αn∆tn)(1− an)(M − 1)]2,

a64,n = λn[1 + (M − 1)λnβn∆t]ζn∆t+ λ2nζn∆t(βn∆tn − ζn∆t)

+λn[1 + (M − 1)λnβn∆t](1− an)(M − 1)αn∆t

+λ2n(βn∆t− ζn∆tn)(1− an)(M − 1)αn∆t,

a66,n = [(1 + (M − 1)λnβn∆t) + λn(βn∆t− ζn∆t)]
2,

and
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c1n = αn∆t(an − (M − 1)anλnαn∆tn − λnαn∆t),

c2n = an(βn∆t− αn∆t)− λnan(M − 1)αnβn∆t
2 − 2λnαnβn∆t

2

−λn(M − 1)[βn∆t+ αn∆tn(1− an)]αn∆t,

c3n = −anβn∆t− λn(βn∆tn)
2 − λn(M − 1)βn∆t[βn∆tn + αn∆t(1− an)],

c4n = (1− an)βn∆t− anζn∆t− 2λnβn∆tζn∆t− λn[(1− an)(M − 1)αn∆tβn∆t

+(M − 1)ζn∆t(αn∆t(1− an) + βn∆t)],

c5n = (1− an)αn∆t+ anζn∆t− 2λnαn∆tζn∆t− λn[(1− an)(M − 1)(αn∆t)
2

+an(M − 1)αn∆tζn∆t],

c6n = (1− an)ζn∆t− λn(ζn∆tn)
2 − λn(1− an)(M − 1)αn∆tζn∆tn.

The coefficient of the reaction to private information at the nth auction, αn, is equal

to:

αn∆t =
an + λn(k2n − k5n)

λn
[
2 + (M − 1)an − 2λn(k3n − 1

2k4n)(1 + an(M − 1))
] .

The equation forψn is given by:

ψn =
Man +Mλn(k2n − k5n)

2 + (M − 1)an − 2λn(k3n − 1
2k4n)(1 + an(M − 1))

.

By substituting an = Σn
Σn+(1−ψn)σ2

ϵ
and λ2n =

ψnΣn−
ψ2
nσ

2
ϵ

M
σ2
u∆tn

and developing the previous

equation, we get that ψn is the solution of the following equation of order six:

σ2ϵ
M
γ5nψ

6
n + (

σ2ϵ
M
γ4n −Σnγ5n)ψ

5
n + (ϕ5n +

σ2ϵ
M
γ3n −Σnγ4n)ψ

4
n + (ϕ4n +

σ2ϵ
M
γ2n −Σnγ3n)ψ

3
n

+ (ϕ3n +
σ2ϵ
M
γ1n − Σnγ2n)ψ

2
n + (ϕ2n − Σnγ1n)ψn + ϕ1n = 0,

with
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

γ1n =M2(k2n − k5n)
2 (Σn+σ

2
ϵ )

2

σ2
u∆t

,

γ2n = −2M(k2n − k5n)(σ
2
ϵ +Σn)

M(k2n−k5n)σ2
ϵ−2(k3n− 1

2
k4n)(MΣn+σ2

ϵ )

σ2
u∆t

,

γ3n =
4(k3n− 1

2
k4n)2σ4

ϵ+M
2(k2n−k5n)2σ4

ϵ+4M2(k3n− 1
2
k4n)2Σ2

n−4M(k2n−k5n)(k3n− 1
2
k4n)Σnσ2

ϵ

σ2
u∆t

−8M(k2n−k5n)σ4
ϵ (k3n− 1

2
k4n)+4M2(k2n−k5n)σ2

ϵ (k3n− 1
2
k4n)Σn−8(k3n− 1

2
k4n)2MΣnσ2

ϵ

σ2
u∆t

,

γ4n =
4M(k2n−k5n)(k3n− 1

2
k4n)σ4

ϵ−8(k3n− 1
2
k4n)2σ4

ϵ−8M(k3n− 1
2
k4n)2Σnσ2

ϵ

σ2
u∆t

,

γ5n =
4(k3n− 1

2
k4n)2σ4

ϵ

σ2
u∆t

,

and 

ϕ1n =M2Σ2
n,

ϕ2n = −2MΣn(2σ
2
ϵ + (M + 1)Σn),

ϕ3n = 4σ4ϵ + 4σ2ϵ (M + 1)Σn + (M + 1)2Σ2
n + 4Mσ2ϵΣn,

ϕ4n = −8σ4ϵ − 4σ2ϵΣn(M + 1),

ϕ5n = 4σ4ϵ .

At the final auction there is no future profit, we then have k2N = 0 and k3N = 0. The

parameter ψN is derived from:

ϕ5Nψ
4
N + ϕ4Nψ

3
N + ϕ3Nψ

2
N + ϕ2NψN + ϕ1N = 0.

The previous equation can be factorized as:

[2σ2ϵψ
2
N − (2σ2ϵ + (M + 1)ΣN )ψN +MΣN ]

2 = 0.

Hence, the parameter ψN is derived from:

2σ2ϵψ
2
N − (2σ2ϵ + (M + 1)ΣN )ψN +MΣN = 0.

This ends the proof of proposition 1.

The case of perfect private information: S̃i = ṽ

We now illustrate our model when σ2ϵ = 0.

In this case, the demand function of informed trader i at auction n becomes:

x̂in = αn∆tṽ + βn∆tp̂
i
n−1, (6.11)
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and his expected profit:

E[πin|p̂i0, . . . , p̂in−1, ṽ] = k1,n−1ṽ
2 + k2,n−1p̂

i
n−1ṽ + k3,n−1p̂

i
n−1

2 + δn−1. (6.12)

ψn is solution of the following equation:

4(k3n− 1
2
k4n)2Σn

σ2
u∆tn

ψ3
n + [

4(k2n−k5n)(k3n− 1
2
k4n)Σn

σ2
u∆t

− (M+1
M )2]ψ2

n

+(2M+1
M + Σn(k2n−k5n)2

σ2
u∆t

)ψn − 1 = 0.

At the final auction, the parameter ψN is derived from:

−(
M + 1

M
)2ψ2

N + 2
M + 1

M
ψN − 1 = 0, (6.13)

then:

ψN =
M

M + 1
. (6.14)

The coefficients αn, βn, an and λn are characterized by the following equation:

λN =

√
M

M + 1

ΣN
σ2u∆tn

. (6.15)

Since σ2ϵ = 0, we have an = 1 for n = 1, . . . , N , we then get:

βN∆t = − 1

(M + 1)λN
= −αN∆t. (6.16)

We can prove, by using mathematical induction, that for all

auctions n = 1, . . . , N we have:

βn∆t = −αn∆t = −
1− 2λn(k1n − 1

2k4n)

λn[M(1− 2λn(k1n − 1
2k4n) + 1]

, (6.17)

k3n = k1n, (6.18)

k2n = −2k1n. (6.19)

Then, the demand function and the expected profit of informed trader i can be written as:

x̂in = αn∆t(ṽ − p̂in−1), (6.20)

E[πin|p̂i0, . . . , p̂in−1, ṽ] = k1n−1(ṽ − p̂in−1)
2 + δn−1, (6.21)
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with

δn−1 = δn + λ2nk3nσ
2
u∆t. (6.22)

Furthermore, we have:

λ2n = ψn
Σn
σ2u∆t

=Mλnαn∆t
Σn
σ2u∆t

. (6.23)

Solving the previous expression (6.23) for λn leads to:

λn =
MαnΣn
σ2u

. (6.24)

These equations are similar to those obtained by Holden and Subrahmanyam (1992).

The case of static setting: N = 1

We now illustrate our model for N = 1.

In this case, we have ∆t = 1 and αN satisfies the following equation:

αN =
aN

λN [2 + (M − 1)aN ]
.

We also have:

aN =
Σ0

Σ0 + σ2ϵ
=

σ2v
σ2v + σ2ϵ

=
1

1 + τ
.

where τ = σ2
ϵ
σ2
v
. Then, αN can be written as follows:

αN =
1

λN (M + 1 + 2τ)
.

This leads to the fact that λN can be written as:

λN =

√
M

M + 1 + 2τ

√
1 + τ

σv
σu
.

We then obtain:

αN =
σu
σv

1√
M(1 + τ)

.

By substituting αN and λN by their expressions, the value function can be written as

follows:

E[πi0] =
σuσv

√
1 + τ√

M(M + 1 + 2τ)
.

These results are similar to those obtained by Dridi and Germain (2009) when all insiders

have the same level of noise in their signals and there is one auction.

All other Propositions are obtained by numerical procedures.
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