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Abstract

This paper refines the approximate factor model of asset returns by dividing sys-

tematic factors into a) natural rate factors, whose sum of squared factor betas grow

at the same rate as the number of assets, and b) semi-strong factors, whose sum of

squared factor betas grow, but at a slower rate. We describe a methodology to estimate

the cross-sectional mean and mean-square of semi-strong factor betas, and to differen-

tiate them from natural rate factors. We apply the methodology to US equity returns

using daily changes in exchange rates and commodity prices as semi-strong factors. We

find that oil and gold price changes are significant factors while foreign exchange rate

changes are only significant in more recent subperiods.
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1 Introduction

The approximate factor model of asset returns is a workhorse of research on asset pricing and

portfolio construction. It uses the many-asset framework of Ross’s (1976) Arbitrage Pricing

Theory, in which we create approximate relationships for a many-asset economy by imagining

a sequence of economies with a growing number of assets, and rely on limiting conditions

as the number of assets goes to infinity. In the classic formulation of Chamberlain and

Rothschild (1983), an approximate factor model is defined by the asymptotic behavior of the

eigenvalues of the asset return covariance matrix when the number of assets, n, approaches

infinity. If the largest k eigenvalues of the covariance matrix grow unboundedly with n and

the remaining eigenvalues are bounded above for all n, then returns obey an approximate

factor model with k factors. Chamberlain and Rothschild also show that the eigenvectors

of the return covariance matrix associated with the k largest eigenvalues can serve as factor

exposures (factor betas) up to an arbitrary nonsingular rotation of the factors.

Chamberlain and Rothschild work with the true covariance matrix and do not directly

address estimation issues. In empirical implementations of their framework, it is standard to

impose slightly more structure. In particular, standard empirical implementations assume

that the k dominant eigenvalues grow at the "natural" rate of n. This paper considers the

case in which the Chamberlain and Rothschild assumptions hold, but some eigenvalues grow

at a slower rate, n1−2α, 0 < α < 1
2
. We show that the associated factors can be interpreted

as common, but less important, sources of return variation. Following the terminology of

Chudik, Pesaran and Tosetti (2011), we call these semi-strong factors. Semi-strong factors
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are stronger than weak factors which have bounded eigenvalues, but weaker than natural

rate factors whose eigenvalues grow at the rate n.1

We work with the case in which factors are observed directly, so the eigenvalue condition

is more simply stated as a condition on the sum of squared betas for a given factor. A natural

rate factor has sum of squared betas going to infinity at rate n whereas a semi-strong factor

has sum of squared betas going to infinity at rate n1−2α. We estimate the factor betas with

simple time series ordinary least squares of individual returns data regressed on the set of

factors. We show that by using the large cross-section of time-series regression-estimated

factor betas one can measure cross-sectional features such as the average factor beta and

the mean-squared factor beta. We derive the asymptotic distributions of the cross-sectional

mean and mean-square of the time-series estimated factor betas, and propose test statistics

for distinguishing them from zero and for distinguishing natural rate from semi-strong factors.

As a concrete example of an application of our framework, consider the sensitivity of

individual US equities to fluctuations in the South Korean Won exchange rate against an

international currency basket. Some US companies (e.g., Korean goods importers) may

benefit favorably from a relative decline in the Korean Won exchange rate, and some others

(e.g., domestic manufacturers competing against Korean imports) may benefit from a relative

increase. The vast majority of firms will have fairly negligible betas, and it is diffi cult to

justify including the Korean Won exchange rate as one of the small number of important

1Note that the term "grow" is used here in terms of the asymptotic approximation for large n; in actual

data, n is fixed. A difference in "rate of growth" means in practice that the approximation for natural rate

factors has different statistical properties than the approximation for semi-strong factors.
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factors in a model of US equity returns. If an investor holds any well-diversified portfolio

of equities, the portfolio exposure to Korean Won relative exchange rate fluctuations will

be negligible. Economists may still be interested in measuring the cross-sectional features

of assets’exposures to this small common factor, even it is only a negligible source of risk

in well-diversified portfolios. For example, we can examine whether the aggregate features

of the cross-section of individual betas of US firms to Korean Won movements has changed

over time. We may wish to measure the magnitude of the (fairly small) influence of Korean

exchange rate changes on US equities, and examine whether the changing nature of the

trade relationship between the US and Korea is reflected in the changing magnitude of this

influence over subperiods. Portfolio analysts may be interested in measuring or hedging

Korean Won risk if for some reason they are holding a poorly diversified portfolio which

included a non-negligible position in this risk.

Section 2 presents the statistical framework for our analysis. We use a random coeffi cients

model to generate both natural rate and semi-strong factors within a unified approximate

factor model framework. Section 3 presents theoretical results on the estimation and testing

of factor betas and their cross-sectional distribution (average and mean-square). We give

conditions such that the factor betas’cross-sectional moments can be consistently estimated

from a large-n cross-section of individual fixed-T time-series regression coeffi cient estimates.

We also devise a statistical test for distinguishing the two types of factors.

Section 4 applies the methodology to individual US equity returns using the Fama-French

market, size and value indices and changes in foreign exchange rates and commodity prices
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as factors. We use daily data over six five-year subperiods, 1989-2018. We find that the

Fama-French indices are natural rate factors. Oil and gold price changes are statistically

significant factors, but the evidence is mixed as to whether they are better classified as

natural rate or semi-strong. Foreign exchange factors are significant only in the more recent

subperiods and are only semi-strong factors. Section 5 concludes.

2 An approximate factor model with semi-strong fac-

tors

We begin by imposing a factor model on returns, and then differentiate between natural-rate

and semi-strong factors within the model. We consider a sequence of return models with

increasing cross-sectional dimension. For each n, let rt denote the n−vector of asset returns.

We assume that for each n the vector of returns obeys the following model:

rt = a+Bft + εt, t = 1, T, (1)

where a is an n−vector of constants, B is a n×k−matrix of factor betas, ft is a k−vector of

random factors, and εt is an n−vector of idiosyncratic returns. We assume that ft and εt are

mutually independent and each is distributed i.i.d. through time. All elements of ft and εt

are assumed to have zero means without loss of generality, due to the inclusion of the vector of

constants, a. Let Ωr = E[(r−a)(r−a)′], Ωf = E[ff ′], and Ωε = E[εε′] denote the covariance

matrices; we assume that all three are nonsingular. All the elements in (1) implicitly include

5



an n superscript, since we are working with asymptotic properties not fixed-n properties,

but we leave this implicit throughout. Of course, when we apply the econometric model to

actual data, the number of assets n will be a constant; the increasing−n framework is just an

asymptotic model to derive meaningful approximations for large n. The time-series sample

size T is fixed throughout the analysis.

We impose the standard Chamberlain-Rothschild assumptions that the largest k eigenval-

ues of the return covariance matrix increase unboundedly with n and the remaining eigen-

values are bounded. Let || · || denote the Euclidian matrix norm over square matrices,

||A|| = sup
x

|x′Ax|√
(x′x)

; recall that in the case of a symmetric positive semidefinite matrix this

equals the largest eigenvalue. Since εt captures the idiosyncratic risks, we impose:

||Ωε|| ≤ c1 for all n. (2)

We also impose the Chamberlain-Rothschild unboundedness assumption on the first k eigen-

values, not restricting their rate of increase. Note that Ωr = BΩfB
′ + Ωε. Since Ωε has

bounded eigenvalues by assumption above, and the eigenvalues of Ωf are fixed, k unbounded

eigenvalues for Ωr is identical to assuming that all k eigenvalues of the inner product matrix

of the betas, (B′B), increase without bound:

lim
n→∞

(min eigval[B′B]) =∞. (3)

Note that (3) implies that all the eigenvalues of B′B are strictly positive except possibly

for n < n for some finite n. All eigenvalues strictly positive means that B′B is nonsingular.
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Therefore, except possibly on a finite subset of n < n, (3) can be written equivalently as:

lim
n→∞
||(B′B)−1|| = 0, (4)

since the eigenvalues of a symmetric positive definite matrix are the reciprocals of the eigen-

values of its inverse.

We keep the two assumptions (2) and (3) throughout. We note however that these two

assumptions alone are not suffi cient for empirical work. Empirical implementations typically

strengthen (3) slightly, in particular by requiring that all k dominant eigenvalues increase at

the "natural" rate n. That is, most empirical analysts replace (3) with:

lim
n→∞

1

n
min eigval[B′B] > 0, (5)

or equivalently (ignoring some technically uninteresting cases2):

lim
n→∞

1

n
(B′B) = M, a nonsingular matrix. (6)

which differs from (4) in the speed at which the eigenvalues must grow with n; (6) requires

that the eigenvalues of B′B go to infinity at rate n whereas (4) only requires that they go

to infinity, at any rate.

We call (6) the "natural" rate of increase since many straightforward rules for choosing

the series of factor beta matrices will result in (6). For example, for notational simplicity

let k = 1 and let B = {+1,−1,+1,−1, ...} where the simple pattern +1,−1 is repeated n/2

2We must exclude the case in which the beta matrix grows explosively with n, and also exclude cases in

which the k × k−matrix series 1
nB

′B only converges on a subsequence or on multiple subsequences. These

cases are automatically excluded with probability one in our random coeffi cients framework described later.
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times. This, or any other repeated pattern of a nonzero set of numbers, will give (6) for

k = 1. This extends simply to k > 1 replacing a nonzero pattern with a nonsingular matrix

pattern (as long as the generating matrix pattern has rank k). Condition (6) will also hold

with probability one if the coeffi cients in B are chosen randomly (over i = 1, n) from an

i.i.d. process with nonsingular covariance matrix, by the strong law of large numbers (shown

later).

By using a less straightforward rule for choosing the sequence of beta matrices, the natural

rate can be replaced with a slower, semi-strong, rate of increase; this is easily done by scaling

fixed factor betas so that the individual betas shrink with n. So, as a simple example with

k = 1, consider the sequence of n−vectors Bn = {− 1
n1/3

,+ 1
n1/3

,− 1
n1/3

,+ 1
n1/3

, ...}. This fulfils

the Chamberlain-Rothschild condition (4), since Bn′Bn = (n · n−2/3) = n1/3 → ∞, but

not the natural rate condition (6), since 1
n
Bn′Bn = (n−1 · n · n−2/3) = n−2/3 → 0. Stated

simplistically and intuitively, semi-strong factors have sum of squared factor betas going

to infinity but average squared factor beta going to zero with n. A more precise definition

appears later.

Our empirical implementation does not require the natural rate assumption; it allows

some of dominant k eigenvalues to have a slower, semi-strong rate of increase. To give struc-

ture to the problem, we generate the factor exposure matrix B with a random coeffi cients

model as described in the next subsection.
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2.1 Generating factor betas with a random coeffi cients model

In our factor model, the beta matrix and factors divide into two subsets with knr and kss

elements, depending upon the average cross-sectional magnitude of the factor betas:

Bf = Bnrfnr +Bssf ss (7)

where the superscript nr denotes "natural rate" and ss denotes "semi-strong." The beta

matrix B will be generated from the first n random draws of an i.i.d. sequence of realizations

of a k−vector random variable b with finite mean vector and nonsingular covariance matrix:

E[b] = µb; E[(b− µb)(b− µb)′] = Ωb;

note that the block-diagonal submatrices Ωnr
b and Ωss

b are also nonsingular given that Ωb

is nonsingular. We also assume that all k components of the random vector b have finite

fourth moments. We use the sequence of random draws of b to create the factor beta matrix,

scaling appropriately to differentiate between natural-rate and semi-strong factors.

Let B∗ denote the n × k−matrix of the first n draws of the vector stochastic process

b. We call B∗ the beta generating matrix. Partition the beta generating matrix into the

first knr and remaining kss columns; B∗ = [Bnr∗|Bss∗]. The first knr factors are natural rate

factors; their betas are simply the random draws of the first knr elements of b :

Bnr = Bnr∗;

The remaining kss = k − knr factors are semi-strong. We fix a rate exponent α > 0 and

assume that the factors betas are of the order n−α; they are generated by scaled versions of
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the generating matrix:

Bss = (n−α)Bss∗. (8)

We impose the condition α < 1
2
. As we will discuss later, this condition is required in

order for the sum of squared factor betas to increase with n. If we were to allow α > 1
2
we

would generate "semi-weak" factors, using the terminology of Chudik et al. (2011).

It is possible (although cumbersome) to allow α to vary across the semi-strong factors;

we do not pursue that here. Note also that the natural rate factors could be said to obey

(8) by allowing α = 0 for them, since n−0 = 1 for all n.

Since the vector stochastic process b is i.i.d. and has finite fourth moments, it follows

from the strong law of large numbers (see White (1984, Proposition 2.11)) that the first two

cross-sectional moments of B converge almost surely, so that:

lim
n→∞

(
1

n
)Bnr′Bnr = Ωnr

b , a.s., (9)

and:

lim
n→∞

(
1

n1−2α
)Bss′Bss = lim

n→∞
(
n2α

n2α
)(

1

n
)Bss∗′Bss∗ = Ωss

b , a.s., (10)

and the cross-product matrix:

lim
n→∞

(
1

n1−α
)Bss′Bnr = lim

n→∞
(
nα

nα
)(

1

n
)Bss∗′Bnr∗ = Ωss,nr

b , a.s.. (11)

The strong law of large numbers also applies to the first moment vectors (appropriately

scaled):
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lim
n→∞

(
1

n
)Bnr′1n = µnrb , a.s., (12)

and:

lim
n→∞

(
1

n1−α
)Bss′1n = lim

n→∞
(
nα

nα
)(

1

n
)Bss∗′1n = µssb , a.s.. (13)

From here on in the paper, we condition on a particular sequence of random realizations

of B and so treat B for estimation purposes as a nonrandom matrix. We assume that the

particular matrix sequence obeys the almost-sure limit conditions (9),(10), (11), (12) and

(13).

3 Estimation of betas and their cross-sectional average

and mean-square

We assume that the factors are observed exactly, so that the statistical problem involves

estimating the factor betas, and features of their cross-sectional distribution (in particular,

their average and mean-square). Since f and ε are assumed mutually independent with ε

conditionally mean zero, (1) gives a seemingly unrelated regression model without cross-

equation restrictions:

rit = ai +Bift + εit; i = 1, n; t = 1, T. (14)

We condition upon ft t = 1, T and so treat it for the purposes of parameter estimation as

a nonrandom time series of fixed length T . Since there are no cross-equation restrictions,

the regression system (14) decomposes into n separate time-series ordinary least squares
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problems. Let F denote the T × (k + 1)−matrix of the explanatory variables in (14), where

the first column is a T−vector of ones, and column j+1 is the time-series of factor realizations

for factor j; the regression estimates for any particular i are:

{âi, B̂i} = (F ′F )−1F ′Ri,

where Ri is the T−vector of asset returns. By standard regression theory for any j we can

describe B̂ij as the true value plus a linear combination of the residuals, in particular:

B̂ij = Bij +

T∑
t=1

mjtεit, (15)

where mjt = [(F ′F )−1F ′]j+1,t. The ordinary least squares estimates are unbiased, with esti-

mation variance:

E[(B̂ij −Bij)
2] = [(F ′F )−1]j+1,j+1σ

2
εi
. (16)

We consider the estimation-error corrected squared regression coeffi cient:

(B̂ij)
2 − [(F ′F )−1]j+1,j+1σ̂

2
εi
, (17)

where σ̂2εi = 1
T−k−1

T∑
t=1

ε̂2it, which is an unbiased estimate of σ
2
εi
by standard regression theory.

The estimate σ̂2εi can be written as a quadratic function of εit, t = 1, T , in particular:

σ̂2εi =

T∑
t=1

T∑
τ=1

ptτεitεiτ .

where ptτ = ( 1
T−k−1)[I − F (F ′F )−1F ′]t,τ .

The estimation-error-adjusted squared beta (17) is a key input to our mean-squared beta

estimate in the next subsection. Since its two components, B̂ij and σ̂
2
εi
, are (respectively)
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linear and quadratic functions of the innovations εit, t = 1, T, its estimation variance is a

linear combination of the first four moments and squared second moment of εi. The weights

in this linear combination are products and cross-products of mjt and ptτ , t, τ = 1, T.

Define m2j, m3j,m4j as the second, third and fourth power sums of mjt, t = 1, T , and

m22j as the sum of cross-products:

m2j =

T∑
t=1

m2
jt

m3j =

T∑
t=1

m3
jt

m4j =
T∑
t=1

m4
jt

m22j =
T∑
t=1

∑
τ 6=t

m2
jτm

2
jt.

Define the following product sums and cross-product sums of ptτ , t = 1, T ; τ = 1, T :

p2 =
T∑
t=1

p2tt

p× p =
T∑
t=1

∑
τ 6=t

(2p2tτ + pttpττ )

pm =
T∑
t=1

pttmjt

pm2 =

T∑
t=1

pttm
2
jt

p×m =
T∑
t=1

∑
τ 6=t

(2ptτmjt + pttm
2
jt)

By straightforward algebra (see Appendix 1 for detailed steps) the estimation variance

of B̂2
ij − [(F ′F )−1]j+1,j+1σ̂

2
εi
is:

V ar[(B̂ij)
2 −m2jσ̂

2
εi

] = c1ijσ
2
εi

+ c2ijE[ε3i ] + c3jE[ε4i ] + c4j(σ
2
εi

)2, (18)
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where:

c1ij = 4m2jB
2
ij

c2ij = 4Bijm3j − 4m2jBij(pmj)

c3j = m4j + (m2j)
2p2 − 2m2j(pm2j)

c4j = 3m22j + (m2j)
2(p× p)− 2m2j(p×m)

Readers will be pleased to know (or at least relieved) that we do not estimate this

complicated variance expression directly, but instead invoke bootstrap methods (see below).

3.1 Statistical identification of the cross-sectional average andmean-

square of semi-strong factor betas

In the case of a semi-strong factor, estimates of the individual betas have limited information

since Bij = n−αB∗ij implies that the magnitude of most betas is too small to detect reliably

for large n. However, as we now show, it is possible to detect the aggregate influence of semi-

strong factors by averaging the cross-section of individual time-series regression estimates

(and their squares). Define µj and χj, j = 1, k, as the cross-sectional averages and average

sums of squares of the factor betas:

µj =
1

n

n∑
i=1

Bij;

χj =
1

n

n∑
i=1

B2
ij; j = 1, k,

We use the cross-section of estimated betas to construct simple estimation-error-adjusted
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estimates:

µ̂j =
1

n

n∑
i=1

B̂ij; (19)

χ̂j =
1

n

n∑
i=1

[B̂2
ij −m2jσ̂

2
εi

]. (20)

We assume that εi, i = 1, n is independently distributed across i, with bounded fourth

moments for all i. It is possible in theory to extend our results to the case in which the

idiosyncratic returns are weakly cross-sectionally correlated, but that would substantially

complicate the derivation of the estimation variance and we do not pursue that extension

here. Let m denote any fixed, finite T−vector (constant across i = 1, n) and let ε̃i denote

a T−vector of independent realization of εi. For a given j ∈ [1, 2, ...k] define the random

series γi = m′ε̃i and θi = 2Bijm
′ε̃i + (m′ε̃i)

2.We assume that for any fixed m the Lindeberg

condition (see White (1984, pp 111)) holds for both γi and θi. Since the estimation error in

B̂ij has the formm′ε̃i, this guarantees that the central limit theorem applies to cross-sectional

averages of beta estimates and squared beta estimates. Since the regression estimates are

independent across i, the variance of the cross-sectional average is 1
n
times the average of

the variances. Using (16) and (18):

nV ar[µ̂j] =
1

n

n∑
i=1

m2jσ
2
εi

nV ar[χ̂j] =
1

n

n∑
i=1

c1ijσ
2
εi

+ c2ijE[ε3i ] + c3jE[ε4i ] + c4j(σ
2
εi)
2. (21)

We assume that the cross-sectional averages converge for large n and let φ and ψj denote
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these convergent limits:

φ = lim
n→∞

1

n

n∑
i=1

σ2εi (22)

ψj = lim
n→∞

1

n

n∑
i=1

c1ijσ
2
εi

+ c2ijE[ε3i ] + c3jE[ε4i ] + c4j(σ
2
εi)
2. (23)

It is straightforward to derive the convergence conditions (22) and (23) from more funda-

mental assumptions, for example by placing bounds on the first four moments of εi for all

i, and restricting the co-relations between Bij and these moments for all i. This additional

complexity would add little value to the analysis so we simply directly assume that these

limits exist.

Since the test statistics are asymptotically normal we have:

d lim
n→∞

n
1
2 (µ̂j − µj) ∼ N(0,m2jφ) (24)

and:

d lim
n→∞

n
1
2 (χ̂j − χj) ∼ N(0, ψj), j = 1, k. (25)

Note that for semi-strong factors j > knr we have lim
n→∞

µj = lim
n→∞

n−αµ∗j = 0 and lim
n→∞

χj = lim
n→∞

n−2αχ∗j = 0. As long as α < 1
2
then the test statistic (24) has rejection power

against H0: µ∗j = 0 approaching one for n → ∞ whenever the true mean is different from

zero. Test statistic (25) requires the stronger condition α < 1
4
for unit asymptotic power

against H0: χ∗j = 0.

The population value of mean-squared beta is always positive if the true mean beta is

nonzero, whereas it is possible to have a positive mean-squared beta when the true mean
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beta is exactly zero. This might give the false impression that the mean-squared beta test

"dominates" the mean beta test, but the relationship between the statistical tests for nonzero

mean-squared beta and nonzero mean beta is actually ambiguous. The estimation error in

the test of mean-square beta can be much higher than in the test of mean beta, so either test

can reject when the other does not. In the case of semi-strong factors, in terms of asymptotic

power, the test for a nonzero mean beta only requires α < 1
2
whereas the test for positive

mean-squared beta requires α < 1
4
. In this sense, the mean beta test is asymptotically

stronger than the mean-squared beta test.

3.2 Bootstrap estimation of the variances

We have derived an explicit formula for the variances of the mean-squared beta estimates,

ψj/n j = 1, k, in (21), but the formula involves the cross-sectional average of a complicated

linear combination of higher moments of asset-specific returns. A naive approach would be

to proxy each term in (21) with time-series estimates from each asset in the sample, and

then take cross-sectional averages. Instead we use a bootstrap methodology, which obviates

the need to estimate the individual components of (21); we discuss our motivation and

justification for this bootstrapped estimator in more detail in Appendix 2. The procedure

is as follows. Let F denote the k × T matrix of factor realizations. First, we randomly

resample with replacement the T−vector of dates t = 1, T producing a random mapping

t∗(t); t = 1, T. We then replace the matrix of returns R and factors F with the resampled
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alternatives R∗ and F ∗ based on this random selection of dates:

R∗it = Rit∗(t); i = 1, n; t = 1, T

F ∗jt = Fjt∗(t); j = 1, k; t = 1, T.

Using R∗ and F ∗ in place of R and F we re-estimate B̂ and χ̂j, and repeat this random

bootstrap a large number of times, h = 1,m. For each j, the variances nψ̂j are found from

the collection of m bootstrapped estimates of χ̂j:

nψ̂j =
1

m

m∑
h=1

(χ̂hj )
2 − (

1

m

m∑
h=1

χ̂hj )
2.

3.3 Distinguishing semi-strong from natural-rate factors

We now consider the problem of empirically distinguishing semi-strong factors from natural

rate factors. Either type of factor has sum of squared betas going to infinity with n, but a

natural rate factor has mean-squared beta converging to a strictly positive value whereas a

semi-strong factor has mean-squared beta going to zero. For large n, the semi-strong factors

are statistically significant (in terms of their mean squared betas being testably greater

than zero as the estimation variance shrinks) but also inconsequential (in terms of their

contribution to average explanatory power going to zero). In the subsections above we have

developed an estimation method which allows us to identify both natural-rate and semi-

strong factors. Now in this subsection we attempt to find methods to distinguish between

the two types. First we propose the use of marginal R-square of each factor in our model as a

descriptive statistic; semi-strong factors will have "small" values for marginal R-square. Then
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we present a formal test statistic using a penalized version of our adjusted mean-squared

beta estimate.

3.3.1 Marginal explanatory power of each factor

The seemingly unrelated regression system (14) can be viewed as a single stacked regres-

sion model with n intercepts (also called asset fixed effects) and nk factor betas, with het-

eroskedasticity across the n assets. Define the adjusted R-squared for this stacked regression

model as one minus unexplained variance over total variance:

R
2

= 1− (
(T − 1)

(T − k − 1)
)(

1

nT

T∑
t=1

n∑
i=1

ε̂2it)/(
1

nT

T∑
t=1

n∑
i=1

(rit − ri)2),

where ri is the time-series sample mean return of asset i. Next, we re-estimate the linear

regression model with all factors except factor j, and re-calculate the stacked regression R
2

using the newly estimated residuals ε̂∗2it :

R
2

(j) = 1− (
(T − 1)

(T − k)
)(

1

nT

T∑
t=1

n∑
i=1

ε̂∗2it )/(
1

nT

T∑
t=1

n∑
i=1

(rit − ri)2).

The difference between R
2
and R

2

(j) gives our marginal R
2 statistic.

∆R
2

j = R
2 −R2(j). (26)

The intuition behind (26) is that if factor j is only semi-strong, then the marginal R-

squared should be small for large n, since lim
n→∞

1
n

n∑
i=1

(Bij)
2 = 0. To understand the intuition,

define σ2fj = 1
T

T∑
t=1

f 2jt and σ
2
r = 1

nT

T∑
t=1

n∑
i=1

(rit− ri)2. Consider the population equivalents of the

two R-squareds, that is, R2 = 1− ( 1
n

n∑
i=1

σ2εi)/σ
2
r and R

2
(j) = 1− ( 1

n

n∑
i=1

σ2εi +B2
ijσ

2
fj)/σ

2
r. Taking
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the difference between these two population R-squareds gives:

∆R2j =
σ2fj
σ2r

(
1

n

n∑
i=1

B2
ij), (27)

hence the population marginal R-squared is a scaled version of mean-squared beta. The

estimated marginal R-squared (26) is not a formal test statistic since we do not give its

sample distribution, but it is a useful descriptive statistic based on (27).

3.3.2 A penalized test statistic for mean-squared beta

We now construct a test statistic for empirically distinguishing natural-rate factors from

semi-strong factors. Either type of factor has sum of squared betas going to infinity with

n, but a natural rate factor has mean-squared beta converging to a strictly positive value

whereas a semi-strong factor has mean-squared beta shrinking to zero at rate n−2α. Consider

a nonrandom sequence an = ajn−2δ with a > 0, 0 < δ < α. We allow the multiplicative

constant aj to vary across factors j, setting aj = ( σ2r
σ2f,j

)/k. This choice of aj is motivated by

the marginal R-squared shown above, see (27).

The sequence an distinguishes natural rate from semi-strong factors, in the sense that:

lim
n→∞

(χj − an) = χ∗j > 0 for all j ≤ knr, whereas

lim sup
n→∞

(χj − an) ≤ 0 for all j > knr.

Once we have chosen the parameters of the sequence an, we compute the statistic:

zj = n
1
2 (
χ̂j − an
ψ

1
2
j

) (28)
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and note that for a natural rate factor j ≤ knr the statistic (28) has unit asymptotic power to

reject E[zj] = 0, whereas it has zero asymptotic power to reject E[zj] = 0 for a semi-strong

factor j > knr. The test statistic establishes a penalized benchmark value for the sum of

squared betas as a function of n; if the estimated sum of squared betas is significantly above

this benchmark, the factor is identified as a natural-rate factor.

4 Application to U.S. equity returns using Fama-French,

currency and commodity factors

In this section we apply the methodology to analyze the currency and commodity exposures

of US equity returns.

4.1 Data and Winsorization

We consider percentage changes in commodity prices and foreign exchange rates (against

a currency basket) as semi-strong factors. We use daily returns on US equity returns over

six periods, 1989-1993, 1994-1998, 1999-2003, 2004-2008, 2009-2013, and 2014-2018. In each

subperiod we restrict the sample to equities with full return records over the 5-year sub-

period. To moderate the influence of extreme return observations (which are often due to

small, isolated trades of illiquid securities) we Winsorize the returns data at 99%; setting all

observations in the top 0.5% and bottom 0.5% within each subperiod equal to the relevant

boundary value. Table 1 shows the cross-sectional average of the first four time-series mo-
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ments of returns in each of the subperiods, both before and after Winsorization. We also

show the maximum and minimum returns in each subperiod; for the after-Winsorization

case, these equal the Winsorization boundary values.

For currency returns, we use the U.S. Dollar, British Pound, Japanese Yen, and Korean

Won, each measured against the global currency basket maintained by the International

Monetary Fund (the Special Drawing Rights Index of the IMF). For commodities, we use

the percentage changes in the prices of oil, gold, aluminum and forest products. The currency

and commodity factors are obtained from Bloomberg. The daily factors are the percentage

daily price changes. The codes in Bloomberg are: U.S. Dollar (XDRUSD), British Pound

(XDRUSD divided by GBPUSD), Japanese Yen (USDJPY times XDRUSD), and Korean

Won (USDKRW times XDRUSD), Brent crude futures traded on ICE (CO1), gold (XAU),

aluminum (LMAHDY), random length lumber futures on the CME (LB1). In addition to

the currency and commodity factors, we include the market, size and value factors from the

Kenneth French data library.3 Table 2 shows the first four time-series moments of the eleven

factors for each of the six subperiods.

4.2 Estimation of mean and mean-square factor betas

Since the seemingly unrelated regression model has the same independent variables for all

assets and no cross-equation restrictions, for the purpose of finding the cross-sectional av-

erages of the coeffi cients (19), the set of n regressions "collapses" into a single time-series

3Available at: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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regression with an equally-weighted average of returns as the dependent variable. The results

are shown in Table 3. The average asset betas for all three Fama-French factors are statisti-

cally significant in all subperiods (with t-statistics in excess of 45). The average asset betas

relative to the currencies are significant in the post-2004 period, with the exception of the

Japanese Yen. Additionally, the average betas relative to the Korean Won are significant in

the second and third subperiods. The average betas for the Japanese Yen are only significant

in the first subperiod, 1989-1993. The average betas for oil and aluminum are significant

in all subperiods (aluminum) except one (oil). The average betas for lumber are generally

insignificant. Table 3 clearly shows that the equity-return based Fama-French factors have

a much stronger average relation to equity returns than the other factors.

To estimate mean-squared betas, we perform individual factor regressions for each of the

securities in each subsample, and then compute the cross-sectional adjusted-mean-squared

estimated betas shown in Table 4. To estimate the variances of the estimated mean-squared

betas we repeat this full estimation process fifty thousand times with bootstrapped returns

and compute the fifty-thousand-sample bootstrap variances for each mean-squared beta. In

the latter three subperiods all of the factors except lumber have estimated mean-squared beta

significantly greater than zero. Oil and gold are also significant in the other three, earlier,

subperiods. The currency factors are mostly insignificant in these earlier three subperiods;

aluminum also has mixed results in these earlier subperiods.
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4.3 Distinguishing natural-rate from semi-strong factors

Table 5 shows the marginal R-squareds found by dropping one factor j = 1, k from the

stackedd regression model. Other than the three Fama-French factors, oil and gold show

some non-negligible explanatory power by this measure. The stacked regression R-squared

shows evidence of a secular increase from the earlier subperiods to the later ones.

Next we implement our test statistic (28) for distinguishing natural-rate from semi-strong

factors. We set δ = 1
5
so that n−2δ gives a reasonably small, but not excessively small,

benchmark for mean-squared beta; for k = 11 and n = 4250, which is roughly the cross-

sectional size in our subperiods, n−2δ/k = 4250−(.4)/11 = 0.0032. Interpreted using (27), a

factor must have a marginal R-squared above 0.3% to qualify as a natural-rate factor.

Table 6 shows the results of the statistical test for whether each factor has mean-square

beta greater than ( σ2r
σ2f,j

)n−.4/11. The results in Table 6 provide strong support for the Fama-

French factors being natural rate factors. The penalized mean-squared betas of the market

factor MKTRF and size factor SMB are significantly positive in all subperiods; the value

factor HML is significantly positive in four of the six subperiods. Oil and gold are significantly

positive in two and three subperiods, respectively, thus showing mixed results as to whether

they are best classified as natural-rate or semi-strong factors. We cannot reject the hypothesis

that the remaining factors other than lumber are only semi-strong rather than natural rate

factors (recall from Table 4 that lumber does not even qualify as a semi-strong factor).

The results in Tables 3, 4, and 6 suggest that the Fama-French factors are natural rate

factors and that lumber is not a statistically identifiable semi-strong factor. Oil and gold
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are both significant factors, but give some conflicting results as to whether they should be

considered natural rate or semi-strong factors. The remaining factors seem to be semi-strong

but not natural-rate.

Lastly, to give an alternative perspective on the data, we use the Akaike Information

Criterion (AIC) to choose factors with positive explanatory power by this criterion. To do

this we must impose an assumption of normality on the asset-specific residuals in the stacked

regression model (14), while still allowing heteroskedasticity across assets. We continue to

assume independence of the asset specific returns across assets and across time. Under

this normality assumption the ordinary least squares estimates are maximum likelihood, as

is obvious. Including the unknown asset-specific return variances, the stacked regression

model has n(k + 2) parameters and nT observations, so the AIC criterion is:

AIC = 2n(k + 2)− 2 log(L̂) (29)

where L̂ is the log likelihood, which in this stacked linear regression model is

L̂ = −nT
2

log(2π)− T

2

n∑
i=1

log(σ̂2εi)−
n

2
.

Akaike’s approach is different from our earlier approach, in that it treats different specifica-

tions (in our case, models with more or fewer factors) as competing approximate models of

the data, rather than as nested models that are the true data generating process. Although

it does not fit exactly into our modeling framework we believe it gives a useful alternative

perspective on the data. (See also Bai and Ng (2002) who use an AIC-type metric to choose

natural-rate factors in a statistical factor model.) Table 7 shows the results from stepwise
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regression based on (29). The three Fama-French factors are always included in the final

model. Gold is included in the final model in all six subperiods, and oil in five of the six.

The results are mixed for aluminum and the four foreign exchange factors; they are dropped

in the earlier subperiods, but kept in the later ones. Lumber is the only factor to be dropped

in all six subperiods.

5 Summary

This paper develops and implements a new econometric methodology for estimating the

cross-sectional influence of "small" factors (that is, factors with only modest explanatory

power) in a large cross-section of asset returns. We build upon the approximate factor

modeling framework of Chamberlain and Rothschild (1983) in which pervasive factors are

identified by the unbounded growth of their sum of squared factor betas as the number of

assets n grows large. Following Chudik et al. (2011), we differentiate between natural-rate

factors, whose sum of squared betas grow at rate n, and semi-strong factors, whose sum of

squared betas grow at a slower rate. We provide a unified framework by embedding a factor

model with both natural-rate and semi-strong factors into a random coeffi cients framework.

We develop an estimation methodology based on the large−n statistical distributions of the

cross-sectional mean and mean-square of time-series regression-estimated factor betas. In

asymptotically large cross-sections, in order to be statistically identified the mean or mean-

squared beta must have a magnitude declining at a slower rate than the standard deviation

of estimation, which declines at rate square-root-n.
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We apply the methodology to the daily returns of US equity returns using Fama and

French’s market, size, and value factors, and four currency (US dollar, British pound,

Japanese Yen, and Korean Won) and four commodity (oil, gold, aluminum and lumber)

factors. We divide our 1989-2018 database into six five-year subperiods. The three Fama-

French factors qualify as natural-rate factors. Oil and gold are both significant factors but

give some conflicting results as to whether they are natural-rate or semi-strong factors. Alu-

minum and the four currency factors are semi-strong factors in the more recent subperiods,

but not natural-rate factors. Lumber does not qualify as either a natural-rate or semi-strong

factor.
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Appendix 1: The Sample Variance of the Squared Regression Coeffi cient

This appendix derives the sample variance of the adjusted squared ordinary least squares

regression coeffi cient within the context of our model. Recall the expression (15) for the

time-series estimated regression coeffi cient:

B̂ij = Bij +

T∑
t=1

mjtεit (A1)

and the adjusted square of this estimate (B̂ij)
2−[(F ′F )−1]j+1,j+1σ̂

2
εi
.Note that [(F ′F )−1]j+1,j+1 =

m2j (to see this, write (F ′F )−1 = (F ′F )−1F ′F (F ′F )−1 and note that m2j is the j + 1th di-

agonal entry). It is easy to show that E[B̂2
ij −m2jσ̂

2
εi

] = B2
ij. Now we derive the variance of

this estimator, that is:

V ar[(B̂ij)
2 −m2jσ̂

2
εi

] = V ar[(B̂ij)
2] + (m2j)

2V ar[σ̂2εi ]− 2m2jCov[(B̂ij)
2, σ̂2εi ]. (A2)

We compute each of the three components on the right-hand side of (A2) separately, begin-

ning with the first. Note that:

V ar[(B̂ij)
2] = E[((B̂ij)

2 −m2jσ
2
εi
−B2

ij)
2]. (A3)

Expressing (B̂ij)
2 using (A1) :

(B̂ij)
2 = B2

ij + 2Bij

T∑
t=1

mjtεit +
T∑
t=1

T∑
τ=1

mjtmjτεitεiτ . (A4)

Inserting (A4) into the right-hand side of (A3) gives:

E[((B̂ij)
2 −m2jσ

2
εi
−B2

ij)
2] = E[(2Bij

T∑
t=1

mjtεit +
T∑
t=1

T∑
τ=1

mjtmjτεitεiτ −m2jσ
2
εi

)2]. (A5)
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Expanding out the square on the right-hand side of (A5) gives three square terms and three

cross terms:

E[(2Bij

T∑
t=1

mjtεit +
T∑
t=1

T∑
τ=1

mjtmjτεitεiτ −m2jσ
2
εi

)2]

= 4B2
ij

T∑
t=1

T∑
τ=1

mjtmjτεitεiτ + (A6)

T∑
t=1

T∑
τ=1

T∑
s=1

T∑
u=1

mjtmjτmjsmjuεitεiτεisεiu + (A7)

(m2jσ
2
εi

)2 + (A8)

4Bij

T∑
t=1

T∑
τ=1

T∑
s=1

mjtmjτmjsεitεiτεis − (A9)

4Bijm2jσ
2
εi

T∑
t=1

mjtεit − (A10)

2m2σ
2
εi

T∑
t=1

T∑
τ=1

mjtmjτεitεiτ . (A11)

We will consider each of the six additive components above in order. For (A6), all the cross

-terms E[εitεiτ ], t 6= τ have expectation of zero and all the pure terms E[ε2it] have expectation

σ2εi , giving

E[4B2
ij

T∑
t=1

T∑
τ=1

mjtmjτεitεiτ ] = 4B2
ijm2jσ

2
εi
.

For (A7), there is one pure term where all four time indices are equal and three cross-product

terms where two pairs of time indices are equal:

E[

T∑
t=1

T∑
τ=1

T∑
s=1

T∑
u=1

mjtmjτmjsmjuεitεiτεisεiu] = m4jE[ε4i ] + 3m22j(σ
2
εi

)2.

(A8) is in a simple form already. For (A9), the only nonzero expectation is the pure sum
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when all three time indices are equal:

E[4Bij

T∑
t=1

T∑
τ=1

T∑
s=1

mjtmjτmjsεitεiτεis] = 4Bijm3jE[ε3i ].

Term (A10) has expectation zero. For (A11):

E[2m2jσ
2
εi

T∑
t=1

T∑
τ=1

mjtmjτεitεiτ ] = 2(m2jσ
2
εi

)2.

Adding together the components:

V ar[(B̂ij)
2] = 4B2

ijm2jσ
2
εi

+m4jE[ε4i ] + 3m22j(σ
2
εi

)2 + (m2jσ
2
εi

)2 +

4Bijm3jE[ε3i ]− 2(m2jσ
2
εi

)2

= 4m2jB
2
ijσ

2
εi

+ 4Bijm3jE[ε3i ] +m4jE[ε4i ] + (3m22j − (m2j)
2)(σ2εi)

2.(A12)

Next we derive the second term of (A2). Recall that σ̂2εi =
T∑
t=1

T∑
τ=1

ptτεitεiτ . Taking the

expectation of the square minus the squared expectation:

V ar[σ̂2εi ] = E[
T∑
t=1

T∑
τ=1

T∑
s=1

T∑
u=1

ptτpsuεitεiτεisεiu]− (σ2εi)
2,

and using that εit is independent across time with zero mean:

= E[ε4i ]
T∑
t=1

p2tt + (σ2εi)
2(

T∑
t=1

∑
τ 6=t

2p2tτ + pttpττ )− (σ2εi)
2

= p2E[ε4i ] + ((p× p)− 1)(σ2εi)
2 (A13)

The last term in (A2) involves the covariance between (B̂ij)
2 and σ̂2εi . Taking the product

of their de-meaned values:

Cov[(B̂ij)
2, σ̂2εi ] = E[(

T∑
t=1

T∑
τ=1

ptτεitεiτ − σ2εi)(2Bij

T∑
t=1

mjtεit +

T∑
t=1

T∑
τ=1

mjtmjτεitεiτ )]. (A14)
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Expanding out the four terms in (A14):

= 2BijE[

T∑
t=1

T∑
τ=1

T∑
s=1

ptτmjsεitεiτεis] +

E[

T∑
t=1

T∑
τ=1

T∑
s=1

T∑
u=1

ptτmjsmjuεitεiτεisεiu]

−σ2εi2BijE[

T∑
t=1

mjtεit]− σ2εiE[

T∑
t=1

T∑
τ=1

mjtmjτεitεiτ ].

and then using the εit is independent through time with zero mean:

= 2BijE[ε3i ]
T∑
t=1

pttmjt + E[ε4i ]
T∑
t=1

pttm
2
jt

+(σ2εi)
2

T∑
t=1

∑
τ 6=t

(2ptτmjtmjτ + pttm
2
jτ )− (σ2εi)

2

T∑
t=1

m2
jt

= 2BijpmjE[ε3i ] + pm2jE[ε4i ] + ((p×m)−m2j)(σ
2
εi

)2. (A15)

Now we collect the terms from (A12), (A13), and (A15) and combine them into (A1), mul-

tiplying (A13) terms by (m2j)
2 and (A15) terms by −2m2j, giving:

V ar[(B̂ij)
2 −mj2σ̂

2
εi

] =

4m2jB
2
ijσ

2
εi

+ 4Bijm3jE[ε3i ] +m4jE[ε4i ] + (3m22j − (m2j)
2)(σ2εi)

2

+(m2j)
2(p2E[ε4i ] + ((p× p)− 1)(σ2εi)

2)

−2m2j(2BijpmjE[ε3i ] + pm2jE[ε4i ] + ((p×m)−m2j)(σ
2
εi

)2)).
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Sorting by the moments and simplifying, this becomes:

V ar[(B̂ij)
2 −m2jσ̂

2
εi

] = c1ijσ
2
εi

+ c2ijE[ε3i ] + c3jE[ε4i ] + c4j(σ
2
εi

)2

c1ij = 4m2jB
2
ij

c2ij = 4Bijm3j − 4m2jBij(pmj)

c3j = m4j + (m2j)
2p2 − 2m2j(pm2j)

c4j = 3m22j + (m2j)
2(p× p)− 2m2j(p×m)
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Appendix 2: Discussion of the Bootstrap Estimation of the Chi Statistic’s Estimation

Variance

This appendix discusses the application of random-case bootstrapping to our model. We

use the technique to estimate the variance of our chi-statistic (23).

We have derived an exact formula for the variance of the chi-statistic under the assump-

tions of the model, but it is a function of the third and fourth moments of asset-specific

returns, which are diffi cult to estimate consistently from time-series regression residuals.

The boostrapping approach to estimating var[χ̂j] is natural in this context. Bootstrapping

uses the full available sample to estimate this variance directly from the sample data. To

implement this estimator we act as if the time series i.i..d. multivariate probability distri-

bution generating returns and factors consists of an n + k-vector process, sτ which has T

discrete possible realizations

sτ = [vec[Rτ ], vec[Fτ ]].

The discrete set of potential state realizations for sτ are assumed equal to our observed

sample values, and each of these T random states is assumed to have equal probability 1
T
.

This is fully consistent with all of our factor model assumptions on returns.

Within the context of this discretized probability distribution we can derive the exact

variance of the chi-statistic. We note that the chi-statistic is a function of a sample of T

random realizations of the state process:

χ̂j = f(s1, ..., sT )

33



where s1, ..., sT are independently and identically distributed realizations, and the formula

for f(·) is the estimation formula for χ̂j. Using the discretized probability distribution, the

exact variance of χ̂j is:

var[χ̂j] =
1

T T

∑
ST

f(s1, ..., sT )2 − (
1

T T

∑
ST

f(s1, ..., sT ))2 (30)

where the averages run across the set of all T−tuples s1, ..., sT . Computing (30) is straight-

forward but impractical since with T = 1200 (roughly our sample size) there are 12001200

terms in the averages. However the averages are easily and closely approximated by simply

averaging over a large number of random draws of (s1, ..., sT ); we use 50, 000 draws in each

subperiod.
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Table 1: Cross-sectional averages of time-series moments of daily returns before and after Winsorization 

Mean variance skewness kurtosis minimum maximum n; T 
1989-1993 before Winsorization 0.00106 0.00200 2.536 66.411 -87.51% 483.32% 4254; 1265 

after Winsorization 0.00106 0.00156 0.672 11.471 -18.75% 23.08% 
1999-2003 before Winsorization 0.00076 0.00163 2.1913 61.048 -86.02% 585.70% 4817; 1263 

after Winsorization 0.00081 0.00133 0.63243 10.194 -16.67% 20.83% 
1999-2003 before Winsorization 0.00097 0.00186 2.6552 80.335 -95.66% 1595.50% 4656; 1256 

after Winsorization 0.00095 0.00143 0.77538 10.919 -17.46% 22.92% 

2004-2008 
before Winsorization 0.00005 0.00102 2.6821 100.94 -89.64% 600.00% 4313; 1259 
after Winsorization 0.00003 0.00072 0.53839 10.625 -12.90% 14.54% 

2009-2013 
before Winsorization 0.00106 0.00090 3.6146 134.5 -82.96% 360.49% 4795; 1258 
after Winsorization 0.00092 0.00064 0.6271 11.236 -11.67% 14.29% 

2014-2018 
before Winsorization 0.00020 0.00069 4.2352 210.85 -92.28% 677.49% 4904; 1258 
after Winsorization 0.00011 0.00043 0.33897 10.683 -9.93% 11.11% 

Notes on Table 1: The table shows the first four moments of returns and the minimum and maximum return within each of the six five-year subperiods, 
before and after Winsorization at the 0.5% and 99.5% fractiles. The last column shows the number of cross-sectional (n) and time-series (T) observations. 
CRSP daily returns in excess of the risk-free rate for all securities with full five-year return histories.  



Table 2: First four moments of time-series factors 

  MKTRF SMB HML USDSDR GBPSDR JPYSDR KRWSDR Oil Gold Alum Lumber 
1989-1993 mean 0.00035 -0.00004 0.00009 0.00003 0.00019 -0.00004 0.00017 0.00018 0.00001 -0.00055 0.00093 
  variance 0.00005 0.00002 0.00001 0.00002 0.00006 0.00004 0.00002 0.00056 0.00007 0.00022 0.00033 

 skewness -0.518 -0.496 0.463 0.088 0.008 0.091 -0.022 -2.376 -0.942 0.189 0.904 

 kurtosis 7.610 6.257 6.514 6.078 4.688 6.011 7.524 45.501 11.979 7.925 17.818 
1999-2003 mean 0.00063 -0.00032 0.00010 0.00003 -0.00010 0.00005 0.00034 0.00002 -0.00022 0.00011 -0.00007 

 variance 0.00007 0.00003 0.00002 0.00001 0.00003 0.00006 0.00022 0.00039 0.00004 0.00015 0.00057 

 skewness -0.759 -0.041 0.060 0.577 0.293 -0.605 1.203 0.040 -0.115 -0.308 0.429 
  kurtosis 11.485 4.458 6.006 7.589 5.549 7.398 55.386 7.618 7.224 7.000 10.484 
1999-2003 mean -0.00002 0.00040 0.00031 0.00004 -0.00002 0.00000 0.00003 0.00103 0.00033 0.00026 0.00030 

 variance 0.00018 0.00006 0.00006 0.00001 0.00003 0.00004 0.00003 0.00055 0.00009 0.00010 0.00047 

 skewness 0.140 -0.734 0.060 0.284 0.044 0.002 0.390 -0.310 1.349 0.299 0.654 
  kurtosis 4.303 7.092 5.399 4.520 3.374 4.598 4.364 4.999 14.951 4.472 7.386 
2004-2008 mean -0.00010 0.00001 0.00015 0.00003 0.00018 -0.00008 0.00010 0.00072 0.00067 0.00009 -0.00025 

 variance 0.00018 0.00004 0.00004 0.00001 0.00003 0.00005 0.00007 0.00054 0.00018 0.00025 0.00048 

 skewness -0.077 -0.161 1.176 -0.143 0.511 0.072 -0.463 0.084 -0.058 -0.387 1.322 

 kurtosis 17.675 9.384 20.043 6.141 7.883 10.465 62.219 6.143 8.841 4.885 14.892 
2009-2013 mean 0.00076 0.00017 -0.00002 0.00001 -0.00014 0.00016 -0.00014 0.00098 0.00026 0.00032 0.00089 

 variance 0.00016 0.00003 0.00005 0.00001 0.00003 0.00005 0.00005 0.00035 0.00014 0.00024 0.00060 

 skewness -0.179 0.166 0.236 0.186 0.074 0.084 0.460 0.007 -0.641 -0.027 1.448 

 kurtosis 6.881 4.806 10.807 7.157 4.275 4.916 10.118 6.265 7.201 4.473 11.694 
2014-2018 mean 0.00032 -0.00009 -0.00011 -0.00008 0.00013 -0.00004 -0.00004 -0.00020 0.00008 0.00014 0.00012 

 variance 0.00007 0.00003 0.00003 0.00001 0.00003 0.00003 0.00002 0.00047 0.00007 0.00014 0.00034 

 skewness -0.44598 0.19017 0.54189 -0.40807 1.4283 -0.71277 0.03695 0.32194 0.31169 0.33381 -0.17648 

 kurtosis 6.4183 3.842 4.7662 7.5632 20.953 10.716 3.5675 5.6263 5.5637 6.0374 7.8895 
 

Notes on Table 2: The table shows the first four moments of the eleven factors within each of the six five-year subperiods. MKTRF, SMB, and HML are the 
Fama-French market, size and value factors; USDSDR, GBPSDR, JPYSDR and KRWSDR are the percentage change in the US dollar, British Pound Sterling, 



Japanese Yen, and Korean Won in units of IMF Special Drawing Rights; Oil, Gold, Aluminum and Lumber are the percentage changes in the prices of these 
commodities. See text for details of data sources.  

  



 

Table 3: Cross-sectional average factor betas and their t-statistics 

 MKTRF SMB HML USDSDR GBPSDR JPYSDR KRWSDR Oil Gold Alum Lumber Rbar2 
1989-1993 
  

0.803 0.671 0.225 -0.009 -0.003 -0.016 0.004 -0.006 0.007 0.005 0.003 94.42% 
126.835 75.835 20.410 -0.506 -0.619 -2.725 0.290 -4.127 1.749 2.098 1.654   

1999-2003 
  

0.843 0.659 0.291 0.006 0.000 -0.002 -0.006 0.004 0.009 0.007 0.003 95.35% 
126.631 77.063 22.969 0.423 0.046 -0.463 -2.503 1.890 1.415 2.300 1.820   

1999-2003 
  

0.726 0.446 0.337 0.034 -0.011 -0.015 -0.063 0.007 0.013 0.025 0.010 93.16% 
105.838 45.254 27.443 1.287 -0.764 -1.397 -4.371 2.608 1.811 3.788 3.166   

2004-2008 
0.790 0.449 0.158 0.071 -0.030 0.003 -0.083 0.021 0.006 0.022 0.005 97.31% 

157.293 48.342 17.563 3.697 -2.858 0.274 -12.389 7.950 1.186 5.898 1.857  
2009-2013 0.805 0.410 0.159 0.105 -0.041 -0.002 -0.045 0.019 0.021 0.012 0.004 98.30% 

 141.050 45.772 19.549 6.103 -4.555 -0.226 -6.462 6.180 5.036 3.314 1.911  
2014-2018 0.733 0.417 0.129 0.066 -0.043 -0.003 -0.062 0.030 0.054 0.011 0.003 96.51% 

 132.515 54.598 15.692 3.772 -6.152 -0.318 -7.681 14.665 9.614 3.160 1.434  
 

Notes on Table 3: The table shows the regression coefficients (first row in each subperiod) and their t-statistics (second row in each subperiod) from the 
regression of the equally-weighted asset return on the eleven factors and an intercept. Numbers in bold are significantly different from zero with 95% 
confidence. 

  



Table 4: Adjusted mean-squared beta estimates and their z-statistics 
 

MKTRF SMB HML USDSDR GBPSDR JPYSDR KRWSDR Oil Gold Alum Lumber 
1989-1993 0.844 0.647 0.164 0.035 0.005 0.004 0.025 0.001 0.019 -0.001 0.000 

59.683 28.359 7.060 0.367 1.550 0.884 0.266 1.921 4.976 -0.612 -0.274 
1994-1998 0.873 0.627 0.259 0.003 0.000 0.004 -0.001 0.001 0.040 0.001 0.000 

48.788 26.927 12.156 0.166 -0.070 1.279 -0.433 1.947 7.404 0.615 0.109 
1999-2003 0.753 0.422 0.310 0.011 0.005 0.004 0.023 0.003 0.023 0.003 0.000 

50.787 18.841 16.105 0.490 0.888 0.933 2.149 5.062 5.753 1.681 0.126 
2004-2008 0.791 0.469 0.183 0.064 0.022 0.017 0.038 0.009 0.021 0.004 0.000 

56.175 23.876 13.057 2.569 2.807 2.753 2.599 8.575 7.270 2.844 1.015 
2009-2013 0.887 0.431 0.189 0.101 0.022 0.008 0.020 0.007 0.036 0.002 0.000 

51.236 32.853 15.165 4.696 4.209 2.787 3.271 6.648 12.816 3.001 1.109 
2014-2018 0.803 0.441 0.235 0.050 0.016 0.015 0.017 0.016 0.113 0.002 0.000 

55.153 39.644 26.888 3.550 4.451 4.075 4.151 13.434 16.428 2.979 -0.020 
 

Notes on Table 4: The table shows the adjusted mean-squared beta estimates (first row in each subperiod) and their z-statistics (second row in each 
subperiod) for the test that the mean-squared beta of the factor is greater than zero. Numbers in bold are significantly greater than zero with 95% 
confidence. 

  



 

Table 5: Panel regression marginal R2’s for each factor 
 

MKTRF SMB HML USDSDR GBPSDR JPYSDR KRWSDR Oil Gold Alum Lumber Stacked R-
squared 

1989-1993 1.511% 0.594% 0.097% 0.008% 0.016% 0.009% 0.008% 0.035% 0.080% -0.007% -0.004% 2.640% 
1994-1998 1.996% 0.868% 0.164% 0.002% -0.001% 0.015% -0.009% 0.022% 0.098% 0.006% 0.001% 4.109% 
1999-2003 4.569% 1.237% 0.589% 0.004% 0.007% 0.011% 0.031% 0.090% 0.128% 0.018% 0.001% 9.552% 
2004-2008 10.670% 1.850% 0.769% 0.059% 0.065% 0.065% 0.288% 0.441% 0.295% 0.085% 0.016% 22.726% 
2009-2013 7.175% 1.414% 0.753% 0.091% 0.071% 0.036% 0.109% 0.199% 0.535% 0.053% 0.021% 28.821% 
2014-2018 8.144% 2.342% 1.075% 0.051% 0.100% 0.058% 0.080% 1.226% 1.103% 0.048% 0.000% 21.674% 

 

Notes on Table 5: The table shows the marginal R-squared found by deleting each factor individually from the stacked regression model. The last column is 
the R-squared of the stacked regression model; see the text for the precise formulas. 

            
            
            
            
            
            

 

  



 

Table 6: Test for natural rate versus semi-strong factors (z-statistics) 
 

MKTRF SMB HML USDSDR GBPSDR JPYSDR KRWSDR Oil Gold Alum Lumber 
1989-1993 53.000 17.025 -8.847 -2.981 -25.246 -25.791 -2.364 -14.527 -13.513 -27.095 -23.122 
1994-1998 45.576 20.222 0.681 -22.739 -24.545 -20.926 -14.473 -24.635 -13.166 -31.582 -25.382 
1999-2003 49.085 15.188 12.007 -23.735 -27.380 -21.214 -14.140 -11.865 -6.900 -25.959 -28.110 
2004-2008 55.069 19.973 8.296 -8.282 -7.378 -6.449 -0.211 3.566 2.055 -5.956 -18.687 
2009-2013 50.343 27.261 11.290 -7.220 -9.734 -14.946 -5.463 -0.120 6.684 -9.493 -14.095 
2014-2018 53.780 34.773 20.671 -13.643 -7.976 -7.995 -11.051 10.862 13.279 -14.366 -32.988 

 

Notes on Table 6: The table shows the z-statistics for the test that the mean-square beta of the factor is significantly above the natural-rate benchmark 
value. See the text for the definition of the natural rate benchmark value. Numbers in bold are significantly greater than zero. 

  



 

Table 7: Stepwise Regression Using the Akaike Information Criterion 
 

MKTRF SMB HML USDSDR GBPSDR JPYSDR KRWSDR Oil Gold Alum Lumber 
1989-1993 * * * 5 6 4 3 * * 2 1 
1994-1998 * * * 5 4 6 2 7 * 3 1 
1999-2003 * * * 2 3 5 6 * * 4 1 
2004-2008 * * * * * * * * * * 1 
2009-2013 * * * * * * * * * * 1 
2014-2018 * * * * * * * * * * 1 

 

Notes on Table 7: The table shows the results of stepwise regression using the AIC benchmark to select factors with positive explanatory power. Asterisks 
denote factors which pass the AIC test for inclusion at all steps. The integers denote the step order at which other factors were dropped (1 denotes the 
factor dropped after the first step, and so on).  


