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Abstract

In the following paper we analyze the strategic competition between fast and slow traders.
A fast or High Frequency Trader (HFT) is defined as a trader that has the ability to react
to information faster than other informed traders and as a consequence can trade more than
other traders. This trader benefits from low latency compared to slower trader. In such a
setting, we prove the existence and the unicity of an equilibrium with fast and slow traders.
We find that the speed advantage of HFTs has a beneficial effect on market liquidity as well
as price efficiency. The positive effect on liquidity is present only if there are 2 or more HFTs.
However, despite those effects slower traders are at a disadvantage as they are not able to
trade on their private information as many times as their HFTs counterpart. Once they can,
most of their private information has been incorporated into prices due to the lower latency
of HFTs. This implies that slower traders are worse off when HFTs are present. The speed
differential benefits HFTs as they earn higher expected profits than their slower counterparts
and also benefits liquidity traders. We find the existence of an optimal level of speed for
HFT.
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1 Introduction

The last two decades have seen the explosion of computerized trading. High Frequency Trading

(HFT) is only one aspect of computerized or algorithmic trading.1 A definition of HFT is quite

complex and can be given by describing its properties such as proprietary trading, very short

holding periods, submission of a large number of orders that are rapidly cancelled, flat position

at the end of the trading day, low margin per trade and the use of co-location services (see

Gomber et al. (2011)). HFT offers different challenges such as how to measure it and assess its

impact on financial markets.2 According to the literature focusing on the US markets, between

40% and 70% of the trading volume in the US equity markets stems directly from HFT (see

Biais and Woolley (2011)). The European and Asian-Pacific markets are slightly less exposed to

HFT as 38% (for the European markets) and between 10%-30% (for the Asian-Pacific markets)

of the traded volume is attributed to HFT. This phenomenon has initially been concentrated

in equity markets. However, it has expanded beyond equity markets to other markets and to

other asset classes such as fixed income markets, FX markets and futures markets.3 This has

been a result of the intense competition between HFTs on the equity markets and the desire to

maintain a certain level of profits. HFT is now a feature of many markets. Some researchers see

it as a permanent phenomenon with a temporary effect. In the same way as the introduction of

telegraph, telephone and then computers gave a speed advantage to its early adopters that then

disappeared as more and more traders adopted the new technology. Overall, the profit of HFTs is

declining as a result of more and more HFTs being active in the different markets. However, due

to its growth and presence in many markets, researchers have become more interested in HFT

and have tried to assess its impact on markets. According to O’Hara (2015) more research both

empirical and theoretical on HFT is still needed. This relatively new phenomenon (Algorithmic

Trading) has also been the focus of the popular business press with an overwhelmingly negative

view (see for instance Baer and Patterson (2014)).

In the present paper, we analyze HFT in a theoretical model. Our definition of a fast trader

(HFT) refers to a trader that can react to information faster than other informed traders and as

a consequence can trade more than other traders. This trader benefits from low latency where

low latency refers to the time it takes a trader to reacts to new information. Comparatively,

a slower trader receives private and public information but needs time to process information

1As algorithmic trading (AT) is still a relatively new phenomenon a definition is slowly emerging. Prix et al.
(2007) describes it as computerized trading controlled by algorithms without any human interventions. A more
precise definition is given by Kirilenko and Lo (2013) as being ”the use of mathematical models, computers, and
telecommunication networks to automate the buying and selling of financial securities”.

2When quantifying HFT the lack of a unique workable empirical definition proves to be problematic (see
Bouveret et al. (2014)). Using two different approaches (a direct and an indirect one), they find that between
24% and 76% of the activity is linked to HFT. The research studies 100 stocks from nine European countries.

3Increased turnover in FX market has been found (increase of $657 billion from April 2007 to April 2010) and
HFT has been indirectly linked to that increase (see the BIS Triennal Survey).
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and then to trade on it. Once the slow trader trades the fast trader has traded several times

(the number of times depends on the speed). One notable aspect is that the slow trader is

unable to trade on the information revealed by the HFT. We capture that difference between

HFT and slow traders. The model analyzed is based on Kyle (1985). We analyze the effect of

differing traders’ speed in a Kyle (1985) framework. We also study the competition between

HFTs. Following empirical findings, we assume that HFTs are informed (see Biais and Foucault

(2014) and Biais et al. (2015) for instance). In that setting, we prove the existence of a unique

equilibrium with fast and slow traders. We show that the presence of more than one HFT has a

beneficial effect on liquidity and this benefits both liquidity traders and slow traders. However,

due to the fact that slow traders trade on information and do not have the technology to react

as fast as HFTs, they are harmed by the presence of faster traders. This is captured by the

fact that their expected profits are decreasing with the HFTs’ relative speed and the number of

HFTs.

The critical aspect for HFTs to realize gains and therefore keep their comparative advantage

is to be able to trade fast and achieve low latency. This is obtained by substantial investment

in infrastructure and also by the co-location of HFT’s computers at the exchange.4 Co-location

allows HFT firms to locate their servers close to the exchanges’ servers decreasing the time to

access market data. The TABB group estimates that, for 2013, $1.5 billion has been invested

in fast trading technologies. Some few papers have looked at that investment issue. Biais et

al. (2015) find that because fast trading firms do not internalize the adverse selection costs

they generate on slower trading firms, they overinvest in fast trading technologies. This over-

investment result also occurs in Pagnotta and Philippon (2018) and Budish at al. (2014). The

investment in fast trading technology is beyond the scope of our paper. However, our model

shows that there is an optimal relative speed for fast traders. This optimal level naturally varies

with both the number of fast and slow traders. It increases with the number of slow traders and

varies non-monotonically with the number of fast traders.

Once a certain level of latency has been put in place, HFTs use strategies to benefit from

certain market conditions. The majority of HFT strategies are designed to profit from high

liquidity and low volatility in the market. However, the strategies HFTs use are heterogeneous

and can be divided in two categories referred to as market-making strategies i.e. liquidity-

providing strategies and opportunistic strategies i.e. statistical arbitrage strategies. There is a

concern that as HFTs are not market makers and have no obligation to provide liquidity, they

may strategically provide liquidity and therefore may not supply it when most needed.5 Some of

4Spread Networks is reported to have spent $350 million to connect Wall Street and Chicago with a fiber optic
cable in order to reduce latency by 3 milliseconds. Even such a small reduction in the latency is worth several
hundred million of dollars.

5As an example of this strategic supply of liquidity, several HFTs ceased to provide liquidity during the Flash
Crash of May 2010. Kirilenko et al. (2016) conclude that HFTs did not trigger the Flash Crash but contributed
to it due to their response to the selling pressure.
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the focus of the literature has been to analyze the impact of the former strategies. Hagstromer

and Norden (2013) find that most HFTs on the Nasdaq-OMX Stockholm use market-making

strategies and alleviate intraday price volatility. Menkveld (2013) specifically focuses on one

HFT market maker and finds that this HFT, broadly speaking, behaves as a market maker

managing his inventory position. The rest of the empirical literature overwhelmingly shows

that the presence of HFT has increased market quality (increased liquidity) by decreasing bid-

ask spreads and contributing to price efficiency (see Brogaard et al. (2014), Hendershott et

al. (2011), Hasbrouck and Saar (2013), Brogaard (2011) and Menkveld (2014) to name but a

few). Chabaud et al. (2014) also obtain that HFTs improve market efficiency by increasing

liquidity and decreasing short term volatility. We confirm the finding on liquidity as we show

that as the relative speed of the HFT increases, it augments the level of liquidity in the market.

This has then a beneficial impact on liquidity traders as this increased liquidity leads to a

reduction of their trading costs. However we prove that this result hinges on the presence of

more than one HFT. Menkveld and Zoican (2017) shows that HFT may have a detrimental

effect on the provision of liquidity and may reduce it. Whether the liquidity is positively or

negatively affected depends on the security news to liquidity trader ratio. Further recent studies

highlight the potential negative effect of the presence of HFTs (see Biais at al. (2015), Brogaard

et al.(2014) and Cartea and Penalva (2012)). Jain et al. (2016) show that the introduction of

Arrowhead high-speed-trading platform on the Tokyo Stock Exchange, enabling high frequency

trading, increases the exposure to systemic risk.

The profit obtained by HFT strategies has also been under scrutiny. HFTs benefit by

arbitraging prices away and taking advantage of the difference in liquidity between distinct

venues and have therefore gained from fragmented markets. HFTs earn a small amount of

profit per trade, however given the number of trades they conduct per day their profit can be

extremely large. Evidences have suggested a decline in the profitability of HFT. This may be

the result of more competition and/or the result of the increased cost of fast trading.6 We find

that the expected profit of HFT initially increases with their relative speed. However a large

relative speed leads to a lower expected profit. This can be explained as follows. When speed

increases, fast informed traders compete more aggressively against each other. However, they

are less affected by the competition from slow informed traders. Hence, an intermediate speed

optimally trades off the two effects and leads to an optimal level of speed. The effect of the

HFT’s relative speed onto slower traders is clearer. Both the number of HFTs and their relative

speed have a negative impact on slower traders.

Our model is related to the following theoretical models as they are also based on Kyle

(1985). Such models are Rosu (2019), Foucault et al. (2016), Li (2017), Bernhardt and Miao

(2004). In Foucault et al. (2016), only one informed trader is present and this trader is defined

6See the Financial Times, February 13, 2013 and the New York Times, October 14, 2012 for evidences of both.
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as the HFT. As a result of that assumption, the effect of the speed differential between traders

cannot be analyzed. The HFT’s expected profit come from value trading (long term) and news

trading (short term). The speculator obtains higher expected profit when he/she is fast than

when he/she is slow. However, the expected profit from value trading is lower. They also find

that the market is less liquid when the speculator is fast. In Rosu (2019), all informed traders

receive a stream of signals and HFTs, there are more than one, are faster than the other traders

to process their signals. He obtains that most of the volume and volatility is generated by

HFTs. He also analyses the situation where HFTs are averse to hold inventory. In that case

and if the aversion is large enough, HFTs’ strategies are changed whereby the HFT trades on

information and then sells back part of his inventory to slower traders. In Bernhardt and Miao

(2004), informed traders acquire their, potentially, distinct information about an asset value at

different time. Their set up takes into account the possibility of information becoming stale.

They have three different models linked to the information received by the informed trader:

observing one innovation of the asset’s value at one period of time, observing the sum of all

innovations up to that period of time, or finally observing the entire history of innovations up to

that period of time. They obtain different interesting results. The U-shaped intradaily pattern

in volume is shown to depend on sequential information acquisition and on the heterogeneity of

the information received. They also show that the two previous conditions are necessary to lead

to a widening of the bid-ask spread (less liquidity), and to an increase of both the volume and

price volatility. In our paper, both the HFTs and the slow traders obtain their information at

the same time. The HFTs can trade several time before the slow trader can do so. Li (2017)

assumes the presence of several HFTs. However, they are less informed than other informed

traders. In our paper, the HFTs and slow traders have the same perfect information about the

future value of the asset traded.

The remainder of the paper is organized as follows. In Section 2, we present the model

with fast and slow traders. In Section 3, we derive the equilibrium and show that it is unique

for the benchmark case of one slow trader and one fast trader. We analyze the properties of

the liquidity, price informativeness and expected profits in that setup. In Section 4, we look

at the general case where several fast traders compete with several slow traders. In this setup,

we characterize the linear equilibrium (existence and uniqueness) and we analyze among other

things how the different market performance measures are affected by the HFT’s speed. Finally,

in Section 5, we make some concluding remarks. All proofs are gathered in the Appendix.

2 The Model

We consider a risky security which is traded in a time interval which begins at t = 0 and ends

at t = 1. At t = 1, the liquidation value of the asset is revealed. It is denoted by ṽ, with
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ṽ ∼ N(v̄, σ2
v). For simplicity and without any loss of generality, we assume v̄ = 0. We consider

two types of informed traders some that have invested in a technology permitting high frequency

trading and others that have not. Although interesting, we do not model this investment decision

and leave it for future research. The fast and slow traders are defined as follows

• M1 fast insiders (HFTs). At t = 0 they know the liquidation value perfectly. Each fast

insider j submits orders. We denote ∆Yjn as the nth order submitted by trader j. It is

assumed that the HFT can trade N times between t = 0 and t = 1. Let ∆tn be the time

interval between the two consecutive orders and equal to ∆tn = 1
N . The fast trader can

react to information faster than other informed traders and as a consequence trades more

than slower traders. This trader benefits from low latency where low latency refers to the

time it takes a trader to react to new information.

• M2 slow insiders. At time t = 0, they observe the liquidation value. Each slow insider i,

for i = 1, . . . ,M2 submits a unique order. It is assumed that it reaches the market at the

same time as the Nth order from the HFT. We denote that order by ∆XiN . This set up

models the fact that the slow trader needs relatively more time to process his information

and then to trade on it. With the aim of greatly simplifying the model we assume that

they can only trade once just before the liquidation value is revealed.

The other two types of agents present in the market are now described

• Liquidity traders. There is a constant flow of orders from liquidity traders. Liquidity

traders do not possess any information about the fundamental value of the risky asset.

We denote by ∆ũn their aggregate order and we assume that ∆ũn are independently and

identically normally distributed with zero mean and variance σ2
u∆tn. Also, we assume

that ∆ũn are independent of ṽ.

• Competitive risk-neutral market makers. As in Foucault et al. (2016) and Kyle

(1985), market makers continuously price the asset and set the price pn, for each trade n

in a Bayesian way.

The number of times the asset can be traded between t = 0 and t = 1 is determined by

the speed of the different traders. As a consequence, N can also be interpreted as the relative

speed of the HFT or the HFT’s speed advantage. In other words, N can be understood as how

many more times the HFTs can trade relative to the slow traders. In that spirit, ∆tn can be

interpreted as the time interval between the nth HFT’s trade and the previous one.

The two types of informed market participants are strategic. For each trade n, the fast

traders determine their optimal trading strategy by a process of backward induction in order to

maximize their expected profits from their last trade N to the current trade, the nth trade.
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We look for a linear equilibrium. Each informed trader chooses an order which is linear in his

private information and the previous public price. The price set by the market maker is linear in

the aggregate order flow given that the competition in market making drives the market makers’

expected profits to zero, conditional on the aggregate submitted orders w̃n.

In the next sections we provide the main results of our paper namely the proposition stating

the existence and uniqueness of the equilibrium for the two case scenario under study: one

HFT competing with one slow trader, and several HFTs competing with several slow traders.

However, in all scenarios liquidity traders are present. We first look at the benchmark case with

one fast and one slow trader.

3 One Fast Trader and One Slow Trader

We now look for the Bayesian Nash Equilibrium with one fast informed trader facing a unique

slow insider.

3.1 The Equilibrium

In this section, we look for a linear equilibrium in which one HFT competes with one slow

informed trader. We denote by ∆Yn the demand of the fast informed trader for his nth trade,

for n = 1, . . . , N and we denote by ∆XN , the order submitted by the slow insider.

Competitive risk-neutral market makers continuously set the linear price. The aggregate

order flow is given by

{
w̃n = ∆Yn + ∆ũn for n < N,

w̃N = ∆YN + ∆XN + ∆ũN .

It should be pointed out that when the slow trader trades the fast trader has traded several

times. However, the slow trader only observes p0 and the future liquidation value he received

as private information before trading. This is due to the slow relative speed assumption.

The next proposition gives the form of the equilibrium.

Proposition 3.1 There exists a unique linear equilibrium in which the demand functions of

both informed traders (HFT and slow trader) for each trade are:{
∆Xn = 0 for n < N,

∆XN = βXN (ṽ − p0),
(3.1)

∆Yn = βYn (ṽ − pn−1)∆tn. (3.2)
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The linear price, the error variance of prices and the expected profits are given respectively

by:

∆pn = Pn − pn−1 = λnw̃n, (3.3)

Σn = var(ṽ|w̃1, . . . , w̃n), (3.4)

E[πYn |p1, . . . , pn−1, ṽ] = αYn−1(ṽ − pn−1)2 + δYn−1. (3.5)

For n < N the different coefficients are given as follows:

αYn−1 =
1

4λn(1− λnαYn )
, (3.6)

δYn−1 = δYn + αYn λ
2
nσ

2
u∆tn, (3.7)

βYn ∆tn =
1− 2λnα

Y
n

2λn(1− λnαYn )
, (3.8)

λn =
βYn Σn

σ2
u

, (3.9)

Σn = Σn−1(1− λnβYn ∆tn). (3.10)

The boundary conditions at the last trade N are:

αYN−1 =
1

9λN
, δYN−1 = 0, βYN∆tN =

1

3λN
, (3.11)

λN =
2βYNΣN

σ2
u

, ΣN = ΣN−1(1− 2λNβ
Y
N∆tN ), (3.12){

αYN = 0,

δYN = 0.
(3.13)

Proof: See Appendix.

After having established the existence, uniqueness and the equations of the equilibrium for

our benchmark, we now turn to how the main performance measures of the market are affected

by the presence of each one HFT and one slow trader. We look at the effect of speed on the

liquidity, informativeness and, finally, on expected profits of both the HFT and the slow trader.

3.2 Liquidity

The liquidity parameter measures the adverse selection problem, in other words, the informa-

tional content of the order flow.

Numerical Result 1: Liquidity
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1. Liquidity increases as a function of time and at an increasing rate.

2. Liquidity decreases with the relative speed or latency of the fast trader.

The first point in result 1 shows how the HFT exploits his information. He gradually uses

his information so that his information is not incorporated into prices too early. As he gets

closer to the end of the trading day he trades more on his private information.

The second point states that the adverse selection problem increases with the speed of

the fast trader. In that case, the HFT is a monopolistic trader and fully exploits his speed

advantage. This can be understood by looking at the graph of how the HFT exploits his private

information (βYn ). As can be seen and as explained above, the trader gradually trades on his

private information. Moreover, as the trader enjoys more speed the more intensely he trades on

his private information later on the trading day.

This result contradicts most of the results on the effect of speed on liquidity that show that

liquidity increases with speed (see Brogaard et al. (2014), Hendershott et al. (2011), Hasbrouck

and Saar (2013), Brogaard (2010) and Menkveld (2014)). However, a recent theoretical paper

by Menkveld and Zoican (2017) shows that the above result may be changed depending on the

security news to liquidity trader ratio. In contrast, our result is due to the assumption that only

one trader has access to a technology giving a relative speed advantage.

The above result can be seen in Figure 1 of the Appendix. Figure 2 shows how the HFT

gradually trades on information and accelerates his intensity towards the end of the trading day.

3.3 Informativeness and Volatility

Numerical Result 2: Price Informativeness

1. Price informativeness
(

1
Σn

)
increases as a function of time.

2. The effect of the HFT’s relative speed is non-monotonic.

As explained above, the fast trader has a monopolistic position for N − 1 of his orders

among his N orders. He gradually trades on his long-lived private information which is, in turn,

gradually incorporated into prices. As a consequence price efficiency increases.

It can be seen that the effect of speed on price efficiency is not monotonic. Higher relative

speed implies that markets are less informationally efficient early on, and eventually reveal more

information closer to the end of the trading day. Again this result depends on the fact that the

HFT is monopolistic. This can be seen in Figure 3 of the Appendix.

Numerical Result 3: Volatility
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1. Price volatility increases and then decreases as a function of time.

2. The effect on volatility of the HFT’s relative speed is non-monotonic.

The above two points can be seen in Figure 4. The effect of a single HFT on price volatility

is not as clear as two effects are at work. On the one hand, the presence of one HFT leads

to a build up in volatility as he faces no competition. On the other hand, the competition

with the slow trader leads to a decrease in volatility. An increase in the HFT’s speed leads to

more trade opportunities for the HFT however the effect of that increase on price volatility is

non-monotonic.

3.4 Expected Profits

Numerical Result 4: Expected Profits

1. Provided N > 2, the expected profit of the fast trader increases with its speed up until an

optimal speed level and then decreases, whereas the expected profit of the slow trader always

decreases with the speed of the HFT.

2. The fast trader always obtains higher expected profits than the slow trader.

As previously commented upon, the HFT enjoys a monopolistic position and the greater

its speed the more he can exploit that position. Not surprisingly, his expected profits are then

increasing with his speed. Because the HFT’s speed strengthens its monopolistic position, it

has a detrimental effect on the slow trader. Once the slow trader can trade, most of his private

information which is shared with the HFT has been incorporated into prices. As the speed of the

HFT increases more of the private information is revealed in prices and the less scope the slow

trader can benefit from his private information. This then leads to decreasing expected profits

of the slow trader with the speed of the HFT and to the slow trader’s expected profit being

lower than the fast trader’s. In that case, higher relative speed only benefits HFTs. Indeed, the

decrease in liquidity due to the increase in relative speed of the HFT makes all other market

participants worse off (apart from the market makers as their expected profits are equal to zero).

This result makes a stronger case for the regulation of high frequency trading.

The above statements can be seen in Figures 31, 33 and 37 of the Appendix. The reader can

refer to the curve where M1 = M2 = 1.
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4 Several Fast and Slow Traders

We now look at the more general case where M1 ≥ 1 several fast traders compete between each

other as well as compete against M2 ≥ 1 slow traders.

4.1 The Equilibrium

Similarly to the previous section, we denote by ∆Yjn the demand of the jth fast informed trader

for the nth order, for j = 1, . . . ,M1 and for n = 1, . . . , N . The aggregate nth orders stemming

from the fast insiders are denoted by
M1∑
j=1

∆Yjn = ∆Yn. We denote by ∆XiN , the order submitted

by the ith slow insider for i = 1, . . . ,M2. The aggregate orders from slow insiders are denoted

by
M2∑
i=1

∆XiN = ∆XN .

The market makers behave as before. The aggregate order flow is given by


w̃n =

M1∑
j=1

∆Yjn + ∆ũn = ∆Yn + ∆ũn for n < N,

w̃N =
M1∑
j=1

∆YjN +
M2∑
i=1

∆XiN + ∆ũN = ∆YN + ∆XN + ∆ũN .

It is straightforward to show that, at the equilibrium, all informed traders of the same type

have an identical strategy. The demand of the ith slow participant is ∆XiN = βXiN (ṽ − p0) =

βXN (ṽ−p0) and the demand for the nth order of the jth fast insider is ∆Yjn = βYjn(ṽ−pn−1)∆tn =

∆Yn = βYn (ṽ − pn−1)∆tn.

As before, although the slow traders trade at the last auction they are trading on the knowl-

edge of p0 and their private information.

The following proposition states the linear equilibrium.

Proposition 4.2 There exists a unique linear equilibrium such that

The aggregate demands by strategic traders are given by
∆Xn = 0 pour n < N,

∆XN = M2β
X
N (ṽ − p0),

∆Yn = M1β
Y
n (ṽ − pn−1)∆tn.

(4.14)

The price is given by

∆pn = λnw̃n. (4.15)
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We then have the following

Σn = var(ṽ|w̃1, . . . , w̃n), (4.16)

E[πY
n |p1, ..., pn−1, ṽ] = αYn−1(ṽ − pn−1)2 + δYn−1, (4.17)

αYn−1 =
1− λnαYn

λn(M1(1− 2λnαYn ) + 1)2
, (4.18)

δYn−1 = δYn + αYn λ
2
nσ

2
u∆tn, (4.19)

βYn ∆tn =
1− 2λnα

Y
n

λn(M1(1− 2λnαYn ) + 1)
, (4.20)

λn =
M1β

Y
n Σn

σ2
u

, (4.21)

Σn = Σn−1(1−M1λnβ
Y
n ∆tn). (4.22)

The boundary conditions are given by:

αYN−1 =
1

(M1 +M2 + 1)2λN
, δYN−1 = 0, (4.23)

βYN∆tN =
1

(M1 +M2 + 1)λN
, λN =

(M1 +M2)βYNΣN

σ2
u

, (4.24)

ΣN = ΣN−1(1− (M1 +M2)λNβ
Y
N∆tN ), (4.25){

αYN = 0,
δYN = 0.

(4.26)

Proof: See Appendix.

In what follows, we focus on the properties of our general model in terms of liquidity, infor-

mativeness and expected profits.

4.2 Liquidity

Numerical Result 5: Liquidity

1. Liquidity ( 1
λ) increases over time.

2. Liquidity increases with the speed of fast traders.

3. If there are more than one HFTs, increasing their number will increase liquidity.

4. The effect of the number of slow traders is not clear.
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Ceteris paribus, we obtain that liquidity increases over time and this can be seen in all the

figures representing the liquidity. This is due to the fact that as time gets closer to the end of

the trading day, more information has been revealed decreasing the asymmetry of information

between informed traders and market makers.

The second point states that the speed of the HFTs is beneficial to market quality as more

speed increases the liquidity of the market. When the speed increases, competing HFTs trade

more aggressively early on, thereby revealing more information quickly and improving market

liquidity for later auctions. This can be seen from Figures 5 to 7 of the Appendix.

In such a model most of the competition comes from the early HFTs trades. The above

result tells us that the more HFTs compete, the better the level of liquidity (this can be seen in

Figure 6).

The two last results, described above, echo the overwhelming finding in the literature that

the presence of HFTs increases liquidity in markets by decreasing bid-ask spreads (see comment

in previous section).

The competition of the HFT against other HFTs always increases their reaction to private

information and this does not depend on the number of slow traders. This increased competition

can either be due to an increase in their number or an increase of their relative speed advantage.

This can be seen in Figures 9, 10, 14, 15 and 16. The competition of HFTs against the slow

traders obviously depends on the number of HFTs. If there is one HFT, that trader gradually

increases its response to private information. However, when competing against more than one

slow trader for the last trade, he strategically reduces his intensity to reduce the impact of the

aggregate order flow on the price. This reduction does not happen when there are more than

one HFT. This can be seen in Figures 9 to 12.

Interestingly, it can be seen from Figure 6, that the liquidity for early trades is not monotonic

with the number of fast traders. It initially decreases with the number leading to the fact

that a market with a single HFT is more liquid early on than any other markets with, given

our parameters configuration, a number of competing HFTs between 2 and 9. This can be

explained by the strategic behavior of the HFTs trying to “smooth” their information revelation

by gradually trading on their private information.

4.3 Informativeness and Volatility

Numerical Result 6: Price Informativeness

1. Price informativeness
(

1
Σn

)
increases with time.

2. Price informativeness also increases with the number of fast traders and their relative
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speed.

This result shows that the competition between fast traders leads them to reveal their infor-

mation at the earlier auctions. They anticipate more competition in the future and as a result

trade more aggressively early on. Therefore, most of the informativeness of prices is provided

by the fast traders as when the slow traders trade most of their private information has been

revealed. The two points can be seen in Figures 17 and 18 in the Appendix.

As can be seen from Figures 20, 21 or 22, the effect of slow traders on price efficiency is

very small. This is due to the fact that once their orders reach the market most of their private

information has been already incorporated into prices.

Numerical Result 7: Volatility

The evolution of price volatility over time depends on the number of slow traders, the number

of HFTs and their relative speed.

1. Price volatility may be decreasing or increasing with the HFTs’ speed.

2. Price volatility increases with the number of slow traders whereas it is non-monotonic with

the number of HFTs.

The above statements can be seen from Figures 23 to 26.

4.4 Expected Profits

Numerical Result 8: Effect of the Number of Traders on Expected Profits

1. Effect of HFTs: An increase in the number of HFTs leads to lower aggregate expected

profits for slow traders. If the number of HFTs is low and their speed advantage is low

enough, an increase in the number of HFTs increases aggregate profits for the HFTs. In

other words, when HFTs face a low competitive environment, be it relative speed or number

of HFTs, their aggregate profits increase with M1.

2. Effect of slow traders: An increase in the number of slow traders leads to lower aggregate

profits for HFTs. For a low number of slow traders, an increase in the number of slow

traders increases the aggregate profits of slow traders and this independently of the speed

advantage of the HFTs. For a large number of slow traders, it decreases the aggregate

profits of slow traders.
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In other words, slow traders are negatively affected by the presence of HFTs. The more HFTs

the worse off they are. The competition between HFTs leads to most of the slow traders’ private

information to be revealed before they have the chance to trade on their private information.

This can be seen in Figures 53, 54, 55 and 56.

When there are two or more fast traders and their relative speed is high enough, competition

between HFTs decreases their aggregate expected profits. Figures 45, 46, 47 and 48 illustrate

that point.

Competition from slow traders decreases the expected profits from HFTs. This is shown in

Figures 49 and 50.

Figures from 57 to 60 illustrate the effect of the number of slow traders on the expected

profits of the slow traders. They show that the aggregate expected profits are non monotonic

with M2, the number of slow traders.

Numerical Result 9: Effect of Relative Speed on Expected Profits

1. The aggregate expected profits of the fast traders decreases with their latency.

2. The aggregate expected profits of the slow traders always decrease with the HFTs relative

speed.

3. HFTs obtain larger expected profits than slow traders.

This last numerical result highlights the relationship of the expected profit of both the fast

traders and the slow traders with the relative speed or latency of the HFTs. The first result

can be explained as follow. The competition between slow and fast traders is far less affecting

the expected profits of HFTs than the competition between fast traders only. As HFTs tend to

compete more aggressively against each other when their trading speed increases, their expected

profits are diminished. Hence, an intermediate level of speed for HFTs optimally trades off the

impact on the two competitions. This result links the profit with the investment in the fast

technology. The fast technology can either be locating servers on the exchange and/or investing

in fiber optic for instance however not limited to them. Our result then states that investing

in the fast technology will benefit the few informed traders able to do so and provided they do

not invest too much in the technology. This is illustrated by Figures 50, 51, and 52. If too

much is invested, fast traders experience a decrease in their expected profits except when being

a monopolistic trader. It is always the case that slow traders see their expected profit decrease

with the investment in the fast technology despite the fact that liquidity is increased by higher

relative speed (see Figures from 53 to 60). They are then made worse off by the presence of

HFTs. Liquidity traders, due to an increase in liquidity, have their cost of trading reduced.
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The last point above echoes Baer and Patterson (2014) stating that higher speed from some

traders gives them an unfair advantage (see Figures 33 and 37).

Numerical result 8 and 9 may help us understand the recent findings that HFTs have seen

their profit reduced. Given our results it may be due to more and more traders investing in

fast technology and leading to more competition and/or to a suboptimal investment in fast

technology.

5 Policy Implications

Comparing the two models can help us draw some policy implications.

In the benchmark (one HFT and one slow trader), we find that liquidity decreases with

the relative speed of HFTs whereas we obtain the opposite result when there are strictly more

than one HFT. We also find that the effect of relative speed on price volatility is not clear.

Relative speed may increase volatility as we get closer to the time where the HFT competes

with the slower trader. These observations can help with the regulation of HFTs. Looking at

liquidity, any type of regulation that promotes competition between HFTs such as increasing

their number will have a beneficial effect. This can be achieved in different ways. Some of

the discussions have focused directly on the speed of HFTs and have proposed a speed limit

to decrease their speed advantage. A speed limit is a proposition put forward by EBS, one of

the two dominant platforms in the foreign exchange market.7 This can be achieved in different

ways. The proposition of EBS is to batch orders together and execute them in a random way.

Another proposition from regulators in Australia and Europe is to impose resting periods. The

discussion around the creation of the IEX stock market is also relevant and interesting. This

market has been created as a response to the perception that speed gives an unfair advantage to

the market participants who benefit from it. The IEX does not allow traders to co-locate their

servers close to the market’s servers. A delay of some fraction of a second is artificially added up

to eliminate the speed advantage of some HFTs. Opposite to that, some markets allow traders

to co-locate their servers close to the market’s servers with same cable length for all traders.

This effectively leads to the same speed for obtaining information across these traders. Other

propositions have been to implement a fee structure directed at HFTs. For instance, the Moscow

Exchange is looking at implementing fees that would apply to traders using many small orders

(this is a feature of HFTs). In China, a limit on the number of trades in Futures markets has

been implemented. Traders can trade in the same instrument for up to 500 times a day. This

puts a significant limit in the number of trades HFTs can execute.

7See the article in the Financial Times from March 7, 2016 entitled US exchanges: the ”speed bump” battle. See
also another article from the Financial Times entitled HF Traders face speed limit from April 28, 2013. Finally,
the New York Times Magazine from October 8, 2013 has published the following article Putting a speed limit on
the Stock Market.
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If we look at the effect of HFTs on price volatility and comparing Figures 4, 15 and 16 it

appears that the effect of the speed and the number of HFTs is not very clear. However, com-

paring the different Figures on price volatility we can see that when we compare the benchmark

case to the general case price volatility is non monotonic in the number of HFTs. Early price

volatility is lower with one HFT whereas late price volatility is lower the more HFTs compete.

Given the comparative statics we obtain, policy recommendations are difficult to make.

6 Conclusion

In the following paper we analyze the effect of the presence of traders with different speeds on

markets.

We get the following results. In the benchmark, we obtain that the liquidity decreases with

the relative speed of the HFTs. This leads to the fact that all other traders, except market

makers, are made worse off by the presence of the HFT. We also obtain that the effect of the

presence of the HFT on price volatility is not clear. For the general case, we prove that the

higher speed from some traders improves liquidity and price efficiency. We also find that speed is

beneficial to HFTs as higher speed leads to the fact that they earn higher expected profits than

slower traders. Higher speed increases the scope to use their private information. Furthermore,

we obtain that speed has a detrimental effect on slow traders. The faster HFTs can trade the

lower the slower traders’ expected profits. This happens despite the fact that liquidity increases

with speed. This is due to the fact that the higher the speed of the HFTs the more they can trade

on their private information leading to the fact that when slower traders can trade most of their

private information has already been incorporated into prices. This echoes Baer and Patterson

(2014) stating that higher speed from some traders gives them an unfair advantage. Finally,

we obtain that the HFTs’ expected profits are initially increasing with their speed advantage.

This speed advantage dissipates for higher speed and their expected profits decrease with speed.

This suggests an optimal level of latency. Overall price volatility is improved by the competition

between HFTs and their relative speed.

Our results show that the improved liquidity (seen in the general case) will not benefit all

market participants. An improved liquidity will reduce the losses by liquidity traders. Slower

informed traders do not benefit from this improved liquidity as their expected profits decrease

with the HFTs’ latency.

Our paper also recommends more competition in HF trading as this may improve liquidity.

Regarding price volatility, any policy recommendations are difficult to make.
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8 Appendix

Proof of Proposition 3.1

This is proved by setting M1 = M2 = 1 in Proposition 2 and the following the exact same

steps as in Proposition 2.

Proof of Proposition 4.2

We look for a linear equilibrium. The fast insiders determine for each of their orders the

one that optimizes their expected profits given their conjectures about the both fast and slow

traders’ strategies.

The linear equilibrium implies that the price set for the nth order flow by the risk-neutral

market makers is: pn = pn−1 + λnwn.
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For n < N , the fast traders are the only informed market participants. We conjecture the

linear strategy played by the jth fast trader for his nth order:

∆Yjn = βYjn(ṽ − pn−1)∆tn,

where ṽ is his private information (the liquidation value of the risky asset). Since all the insiders

receive the same information at time t = 0, by using a symmetric argument their strategies are

identical at the equilibrium. Therefore, we suppress the ”j” subscript from the reaction βjn and

the expected profit πjn of the jth fast informed trader. One can then consider the profit of this

jth fast informed trader which is realized for the nth order, and what remains to be gained from

the next order to the end of trading. This is given below:

E[πY
n |p1, . . . , pn−1, ṽ] = max

∆Yjn

(
E[(ṽ − pn)∆Yjn|p1, . . . , pn−1, ṽ] + E[πY

n+1|p1, ..., pn−1, ṽ]
)
,

= max
∆Yjn

(I + II),

with I = E[(ṽ − pn)∆Yjn|p1, . . . , pn−1, ṽ] and II = E[πY
n+1|p1, ..., pn−1, ṽ].

We have

I = E [(ṽ − (pn−1 + λn(∆Yjn + ∆Y ∗ + ∆ũn)))∆Yjn|p0, . . . , pn−1, ṽ] ,

where ∆Y ∗ is the sum of the orders submitted at the same time by the M1−1 other fast informed

traders.

By considering that ũn and ṽ are independent and that E(ũ) = 0, we obtain:

I = (ṽ − pn−1)∆Yjn − λn(∆Yjn)2 − λn∆Yjn∆Y ∗.

On the other hand, we have:

II = E
[
αYn (ṽ − pn)2 + δYn |p0, . . . , pn−1, ṽ

]
,

II = E
[
αYn (ṽ − pn−1 − λn(∆Yjn + ∆Y ∗ + ∆ũn))2 + δYn |p0, . . . , pn−1, ṽ

]
.

This leads to:

II = αYn (ṽ − pn−1)2 − 2λnα
Y
n (ṽ − pn−1)(∆Yjn + ∆Y ∗)

+ λ2
nα

Y
n

(
σ2
u∆tn + (∆Yjn)2 + (∆Y ∗)2 + 2∆Yjn∆Y ∗

)
+ δYn .

Considering the first order condition of the above maximization problem leads to:

(ṽ − pn−1)− 2λn∆Yjn − λn∆Y ∗ − 2λnα
Y
n (ṽ − pn−1) + 2λ2

nα
Y
n ∆Yjn + 2λ2

nα
Y
n ∆Y ∗ = 0.

At the equilibrium, all insiders submit identical orders since they have received the same

information leading to ∆Y ∗ = (M − 1)∆Yjn. Hence at the equilibrium we find:
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∆Yjn =
1− 2λnα

Y
n

λn [1 +M1(1− 2λnαYn )]
(ṽ − pn−1).

We then identify the reaction of the jth fast informed trader to his private information and

to the previous price for his nth order:

βYn ∆tn =
1− 2λnα

Y
n

λn [1 +M1(1− 2λnαYn )]
.

Finally, the second order condition yields to:

λn(1− λnαYn ) > 0. (8.27)

On the other hand, the market efficiency condition implies that λn is the regression coefficient

of ṽ on w̃n conditional on w̃1, . . . , w̃n, in other words:

λn =
cov(ṽ, w̃n)|w̃1...,w̃n−1

var(w̃n)|w̃1...,w̃n−1

.

By developing, we obtain:

λn =
M1β

Y
n Σn−1

M2
1 (βYn )2∆tnΣn−1 + σ2

u

.

We now calculate the variance of error prices for the nth order Σn:

Σn = var(ṽ|w̃1, . . . , w̃n) = var(ṽ|w̃1, . . . , w̃n−1)−
cov2
|w̃1,...,w̃n−1

(ṽ, w̃n)

var(ṽ|w̃1, . . . , w̃n−1)
.

We derive the following expressions of Σn and λn respectively:

Σn =
Σn−1σ

2
u

M2
1 (βYn )2∆tnΣn−1 + σ2

u

,

λn =
M1β

Y
n Σn

σ2
u

,

Σn = Σn−1(1− λnM1β
Y
n ∆tn).

Finally, for determining the relationship between αYn and αYn−1 as well as between δYn and

δYn−1 we substitute the expression of ∆Yjn into the fast trader’s expected profit. We then obtain:

E[πYn |p0, . . . , pn−1, ṽ] = (ṽ − pn−1)∆Yjn − λn(∆Yjn)2 − λn∆Yjn∆Y ∗

+ αYn (ṽ − pn−1)2 − 2λnα
Y
n (ṽ − pn−1)(∆Yjn + ∆Y ∗)

+ λ2
nα

Y
n

(
σ2
u∆tn + (∆Yjn)2 + (∆Y ∗)2 + 2∆Yjn∆Y ∗

)
+ δYn ,

= αYn−1(ṽ − pn−1)2 + δYn−1.
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Thus, we have:

E[πYn |p0, . . . , pn−1, ṽ] = (ṽ − pn−1)βYn (ṽ − pn−1)∆tn − λn(βYn (ṽ − pn−1)∆tn)2

− λnβYn (ṽ − pn−1)∆tn(M1 − 1)βYn ∆tn + αYn (ṽ − pn−1)2

− 2λnα
Y
n (ṽ − pn−1)(βYn (ṽ − pn−1)∆tn + (M1 − 1)βYn ∆tn)

+ λ2
nα

Y
n

+ 2βYn (ṽ − pn−1)∆tn(M1 − 1)βYn ∆tn

= αYn−1(ṽ − pn−1)2 + δYn−1,

αYn−1 =
1− λnαYn

λn [M1(1− 2λnαYn ) + 1]2
,

δYn−1 = δYn + αYn λ
2
nσ

2
u∆tn. (8.28)

We now determine the demand of the insiders at the last auction n = N .

The ith slow informed trader chooses his demand ∆XiN that maximizes his profit knowing

his information that he receives at time t = 0, that is to say, his private signal ṽ and the public

price p0. Therefore his maximization problem is:

E[πXN |p0, ṽ] = max
∆XiN

E[∆XiN (ṽ − pN )|p0, ṽ],

with pN = ∆XiN+∆X∗+∆YN+∆ũN and where ∆X∗ represents the aggregate orders submitted

by the (M2−1) other low informed traders and ∆YN is the sum of the orders of the fast informed

traders. Moreover at n = 0, all insiders even slow traders observe the realization v of the law ṽ.

As the market is efficient, all prices information, including the realization of the law p(N−1), is

contained by v.

The first order condition implies that:

(ṽ − pN−1)− λN∆YN − 2λNXiN − λN∆X∗ = 0.

At the equilibrium the slow informed traders submit the same orders, in other words ∆X∗ =

(M2 − 1)∆XiN . Hence the first order condition is given by:

∆XiN =
1

λN (M2 + 1)
(ṽ − pN−1)− ∆YN

(M2 + 1)
.

The jth fast informed trader solves the following maximization problem:

E[πYN |p0, . . . , pN−1, ṽ] = max
∆YjN

E[∆YjN (ṽ − pN )|p0, . . . , pN−1, ṽ].
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This can be rewritten as

E[πYN |p0, . . . , pN−1, ṽ] =

max
∆YjN

E[∆YjN ((ṽ − pN−1)− λN (∆YjN + ∆Y ∗ + ∆XN + ∆ũn)) |p0, . . . , pN−1, ṽ],

with ∆Y ∗ being the aggregate orders submitted by the (M1−1) other fast informed traders and

∆XN the aggregate orders of the slow informed traders.

This leads to,

E[πYN |p0, . . . , pN−1, ṽ] = max
∆YjN

(
∆YjN (ṽ − pN−1)− λN (∆YjN )2 − λN∆YjN∆Y ∗ − λN∆YjN∆XN

)
.

The first order condition is given by:

(ṽ − pN−1)− 2λN∆YjN − λN∆Y ∗ − λN∆XN = 0.

At the equilibrium we have ∆Y ∗ = (M1 − 1)∆YjN . We also obtain the order of the jth fast

informed trader:

∆YjN =
1

λN (M1 + 1)
(ṽ − pN−1)− ∆XN

(M1 + 1)
.

In sum, we have:



M2∑
i=1

∆XiN = ∆XN = M2
λN (M2+1)(ṽ − pN−1)− M2∆YN

(M2+1) ,

M1∑
j=1

∆YjN = ∆YN = M1
λN (M1+1)(ṽ − pN−1)− M1∆YN

(M1+1) .

This system of equations implies that:

∆XiN = ∆YjN =
1

λN (M1 +M2 + 1)
(ṽ − pN−1).

On the other hand, the error variance of price at the final auction is:

ΣN = var[ṽ|w1, . . . , wN−1, wN ] = ΣN−1 −
cov2(ṽ, wN )|w1,...,wN−1

var(wN )|w1,...,wN−1

.

This leads to:

ΣN =
σ2
u∆tNΣN−1

M2
1 (βYN∆tN )2ΣN−1 +M2

2 (βXN )2ΣN−1 + 2M1M2βYN∆tNβXNΣN−1 + σ2
u∆tN

.

The liquidity parameter is given by:

λN =
cov(ṽ, wN )|w1,...,wN−1

var(wN )|w1,...,wN−1

,

=
M1β

Y
N∆tNΣN−1 +M2β

X
NΣN−1

M2
1 (βYN∆tN )2ΣN−1 +M2

2 (βXN )2ΣN−1 + 2M1M2βYN∆tNβXNΣN−1 + σ2
u∆tN

.
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Since ∆XiN = ∆YjN for all i = 1, . . . ,M2 and j = 1, . . . ,M1, we have that βXN = βYN∆tN

and the following relationships:

ΣN = ΣN−1

(
1− (M1 +M2)λNβ

Y
N∆tN

)
,

and

λN =
(M1 +M2)βYNΣN

σ2
u

.

The boundary conditions give:

{
αYN = 0,
δYN = 0,

and

βYN∆tN = βXN =
1

λN (M1 +M2 + 1)
.

�
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9 Figures

9.1 One HFT and one slow trader

All graphs are done with σ2
v = σ2

u = 1.
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Figure 1: Benchmark model. The figure com-

pares the liquidity parameter for different HFT’s

speeds (N = 4, N = 20 and N = 100) as a

function of time.
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Figure 2: Benchmark model. The figure com-

pares the HFT’s reaction to private information

for different HFT’s speeds (N = 4, N = 20 and

N = 100) as a function of time.
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Figure 3: Benchmark model. The figure com-

pares price efficiency for different HFT’s speeds

(N = 4, N = 20 and N = 100) as a function of

time.
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Figure 4: Benchmark model. The figure com-

pares price volatility for different HFT’s speeds

(N = 4, N = 20 and N = 100) as a function

of time. The number of HFTs and slow traders

and equal to 1.
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9.2 Several HFTs and several slow traders
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Figure 5: General Model. The figure compares

the liquidity parameter for different number of

HFT. The number of slow traders is fixed at

M2 = 1 and the HFT’s relative speed is set at

N = 4.
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Figure 6: General Model. The figure compares

the liquidity parameter for different number of

HFT. The number of slow traders is fixed at

M2 = 1 and the HFT’s relative speed is set at

N = 20.
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Figure 7: General Model. The figure compares

the liquidity parameter for different number of

HFT. The number of slow traders is fixed at

M2 = 1 and the HFT’s relative speed is set at

N = 100.
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Figure 8: General Model. The figure compares

the liquidity parameter for different number of

slow traders. The number of HFT is fixed at

M1 = 1 and the HFT’s relative speed is set at

N = 4.
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Figure 9: General Model. The figure compares

the liquidity parameter for different number of

slow traders. The number of HFT is fixed at

M1 = 1 and the HFT’s relative speed is set at

N = 20.
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Figure 10: General Model. The figure compares

the liquidity parameter for different number of

slow traders. The number of HFT is fixed at

M1 = 1 and the HFT’s relative speed is set at

N = 100.
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Figure 11: General Model. The figure compares

the HFT’s reaction for different number of HFT.

The number of slow traders is fixed at M2 = 1

and the HFT’s relative speed is set at N = 4.
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Figure 12: General Model. The figure compares

the HFT’s reaction for different number of HFT.

The number of slow traders is fixed at M2 = 1

and the HFT’s relative speed is set at N = 20.
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Figure 13: General Model. The figure compares

the HFT’s reaction for different number of HFT.

The number of slow traders is fixed at M2 = 1

and the HFT’s relative speed is set at N = 100.
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Figure 14: General Model. The figure compares

the HFT’s reaction for different number of slow

traders. The number of HFT is fixed at M1 = 1

and the HFT’s relative speed is set at N = 4.
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Figure 15: General Model. The figure compares

the HFT’s reaction for different number of slow

traders. The number of HFT is fixed at M1 = 1

and the HFT’s relative speed is set at N = 20.
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Figure 16: General Model. The figure compares

the HFT’s reaction for different number of slow

traders. The number of HFT is fixed at M1 = 1

and the HFT’s relative speed is set at N = 100.
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Figure 17: General Model. The figure compares

price efficiency for different number of HFT.

The number of slow traders is fixed at M2 = 1

and the HFT’s relative speed is set at N = 4.
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Figure 18: General Model. The figure compares

price efficiency for different number of HFT.

The number of slow traders is fixed at M2 = 1

and the HFT’s relative speed is set at N = 20.
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Figure 19: General Model. The figure compares

price efficiency for different number of HFT.

The number of slow traders is fixed at M2 = 1

and the HFT’s relative speed is set at N = 100.
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Figure 20: General Model. The figure com-

pares price efficiency for different number of slow

traders. The number of HFT is fixed at M1 = 1

and the HFT’s relative speed is set at N = 4.
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Figure 21: General Model. The figure com-

pares price efficiency for different number of slow

traders. The number of HFT is fixed at M1 = 1

and the HFT’s relative speed is set at N = 20.
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Figure 22: General Model. The figure com-

pares price efficiency for different number of slow

traders. The number of HFT is fixed at M1 = 1

and the HFT’s relative speed is set at N = 100.
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Figure 23: General Model. The figure compares

volatility of prices for different number of HFT.

The number of slow traders is fixed at M2 = 1

and the HFT’s relative speed is set at N = 4.
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Figure 24: General Model. The figure compares

volatility of prices for different number of HFT.

The number of slow traders is fixed at M2 = 1

and the HFT’s relative speed is set at N = 20.
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Figure 25: General Model. The figure compares

volatility of prices for different number of HFT.

The number of slow traders is fixed at M2 = 1

and the HFT’s relative speed is set at N = 100.
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Figure 26: General Model. The figure compares

volatility of prices for different number of slow

traders. The number of HFT is fixed at M1 = 1

and the HFT’s relative speed is set at N = 4.
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Figure 27: General Model. The figure compares

volatility of prices for different number of slow

traders. The number of HFT is fixed at M1 = 1

and the HFT’s relative speed is set at N = 20.
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Figure 28: General Model. The figure compares

volatility of prices for different number of slow

traders. The number of HFT is fixed at M1 = 1

and the HFT’s relative speed is set at N = 100.
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Figure 29: General Model. The figure compares

the individual expected profit of the HFT for dif-

ferent number of HFT as a function of the HFT’s

relative speed. The number of slow traders is

fixed at M2 = 1.

Figure 30: General Model. The figure compares

the individual expected profit of the HFT for dif-

ferent number of HFT as a function of the HFT’s

relative speed. The number of slow traders is

fixed at M2 = 2.

Figure 31: General Model. The figure compares

the individual expected profit of the HFT for dif-

ferent number of HFT as a function of the HFT’s

relative speed. The number of slow traders is

fixed at M2 = 4.

Figure 32: General Model. The figure compares

the individual expected profit of the HFT for dif-

ferent number of HFT as a function of the HFT’s

relative speed. The number of slow traders is

fixed at M2 = 20.
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Figure 33: General Model. The figure compares

the individual expected profit of the HFT for dif-

ferent number of slow traders as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M1 = 1.

Figure 34: General Model. The figure compares

the individual expected profit of the HFT for dif-

ferent number of slow traders as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M1 = 2.

Figure 35: General Model. The figure compares

the individual expected profit of the HFT for dif-

ferent number of slow traders as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M1 = 4.

Figure 36: General Model. The figure compares

the individual expected profit of the HFT for dif-

ferent number of slow traders as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M1 = 20.
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Figure 37: General Model. The figure compares

the individual expected profit of the slow traders

for different number of HFT as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M2 = 1.

Figure 38: General Model. The figure compares

the individual expected profit of the slow traders

for different number of HFT as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M2 = 2.

Figure 39: General Model. The figure compares

the individual expected profit of the slow traders

for different number of HFT as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M2 = 4.

Figure 40: General Model. The figure compares

the individual expected profit of the slow traders

for different number of HFT as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M2 = 20.
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Figure 41: General Model. The figure compares

the individual expected profit of the slow traders

for different number of slow traders as a function

of the HFT’s relative speed. The number of slow

traders is fixed at M1 = 1.

Figure 42: General Model. The figure compares

the individual expected profit of the slow traders

for different number of slow traders as a function

of the HFT’s relative speed. The number of slow

traders is fixed at M1 = 2.

Figure 43: General Model. The figure compares

the individual expected profit of the slow traders

for different number of slow traders as a function

of the HFT’s relative speed. The number of slow

traders is fixed at M1 = 4.

Figure 44: General Model. The figure compares

the individual expected profit of the slow traders

for different number of slow traders as a function

of the HFT’s relative speed. The number of slow

traders is fixed at M1 = 20.
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Figure 45: General Model. The figure compares

the Aggregate expected profit of the HFT for dif-

ferent number of HFT as a function of the HFT’s

relative speed. The number of slow traders is

fixed at M2 = 1.

Figure 46: General Model. The figure compares

the Aggregate expected profit of the HFT for dif-

ferent number of HFT as a function of the HFT’s

relative speed. The number of slow traders is

fixed at M2 = 2.

Figure 47: General Model. The figure compares

the Aggregate expected profit of the HFT for dif-

ferent number of HFT as a function of the HFT’s

relative speed. The number of slow traders is

fixed at M2 = 4.

Figure 48: General Model. The figure compares

the Aggregate expected profit of the HFT for dif-

ferent number of HFT as a function of the HFT’s

relative speed. The number of slow traders is

fixed at M2 = 20.
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Figure 49: General Model. The figure compares

the Aggregate expected profit of the HFT for dif-

ferent number of slow traders as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M1 = 1.

Figure 50: General Model. The figure compares

the Aggregate expected profit of the HFT for dif-

ferent number of slow traders as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M1 = 2.

Figure 51: General Model. The figure compares

the Aggregate expected profit of the HFT for dif-

ferent number of slow traders as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M1 = 4.

Figure 52: General Model. The figure compares

the Aggregate expected profit of the HFT for dif-

ferent number of slow traders as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M1 = 20.
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Figure 53: General Model. The figure compares

the Aggregate expected profit of the slow traders

for different number of HFT as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M2 = 1.

Figure 54: General Model. The figure compares

the Aggregate expected profit of the slow traders

for different number of HFT as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M2 = 2.

Figure 55: General Model. The figure compares

the Aggregate expected profit of the slow traders

for different number of HFT as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M2 = 4.

Figure 56: General Model. The figure compares

the Aggregate expected profit of the slow traders

for different number of HFT as a function of

the HFT’s relative speed. The number of slow

traders is fixed at M2 = 20.
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Figure 57: General Model. The figure compares

the Aggregate expected profit of the slow traders

for different number of slow traders as a function

of the HFT’s relative speed. The number of slow

traders is fixed at M1 = 1.

Figure 58: General Model. The figure compares

the Aggregate expected profit of the slow traders

for different number of slow traders as a function

of the HFT’s relative speed. The number of slow

traders is fixed at M1 = 2.

Figure 59: General Model. The figure compares

the Aggregate expected profit of the slow traders

for different number of slow traders as a function

of the HFT’s relative speed. The number of slow

traders is fixed at M1 = 4.

Figure 60: General Model. The figure compares

the Aggregate expected profit of the slow traders

for different number of slow traders as a function

of the HFT’s relative speed. The number of slow

traders is fixed at M1 = 20.
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