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I. Introduction

Any asset pricing model can be formally characterized either under a Beta or a stochas-

tic discount factor (SDF) representation. The SDF representation states that the value of

any asset equals the expected value of the product of the (stream of) payoffs on the asset

and the SDF. In a Beta representation, the expected return on an asset is instead a linear

function of its factor exposures (betas). The Beta approach is widely implemented in the

finance literature using the two-stage cross-sectional regression methodology advocated

by Black et al. (1972), Fama and MacBeth (1973), and Kan et al. (2013). The relatively

new SDF characterization can be traced back to Dybvig and Ingersoll (1982), Hansen

and Richard (1987), and Ingersoll (1987), who derive it for a number of theoretical asset

pricing models formerly available only under the classical Beta framework.

Even though both characterizations are theoretically equivalent, the parameters of in-

terest are in general different under the two setups. In particular, the Beta representation

is formulated to analyze the factor risk premia, δ, and as a residual, Jensen’s alpha, α. In

contrast, the SDF representation is intended to analyze the parameters that enter into

the assumed stochastic discount factor, λ, and the resulting pricing errors π.1 As a matter

of fact, only when the factors are standardized to have zero mean, a variance equal to

one, and to be mutually uncorrelated, the parameters of interest coincide, i.e., δ = λ,

and α = π; however these are rather a set of theoretical assumptions than circumstances

commonly observed in practice.2

The fact that the two representations are equivalent, imply that there is a one-to-one

mapping between δ and λ, and between α and π, which may facilitate the comparison

of the estimators. Though, this theoretical equivalence does not necessarily entail an

empirical equivalence. Therefore, the experimental questions that arise are: (1) Is it better

to produce inferences on δ or on λ? and analogously: (2) Is it better to make inferences

on α or on π?

1See Ferson and Jagannathan (1996) for a general approach to any equivalence and differences be-
tween the two approaches.

2Of course factors may be built by the econometrician to satisfy these properties but these will be
then derivative factors stemming from actually observed ones and the necessary transformations are
likely to severely impact their nature and interpretation.
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Our empirical and analytical results show that, in general, the Beta method is more

efficient but less robust than the SDF method. That is, the estimators of δ and π have

lower simulated (relative) standard errors than their corresponding estimators for λ and

α. The main objective of this paper is then to document that the choice of the Beta or

the SDF method can be condensed into a trade-off between efficiency versus robustness.

In this sense, we provide empirically motivated evidence about what drives this trade-off.

This “easy way” to validate the information in asset prices is valuable for researchers

and practitioners because they might have a priori rough idea about the benefits and the

pitfalls of following either method in order to conduct their empirical analysis.

To disentangle the source of the empirical results, we extend Jagannathan and Wang

(2002) analytical results to the case of multifactor asset pricing models. We find that the

source of the efficiency of the Beta method over the SDF method, is rooted in the higher-

order moments effects on factors, that impact more the SDF than the Beta estimation.3

We show that the factor negative skewness – which is usually a characteristic of the

momentum portfolios, constitute a drawback to the SDF method at estimating λ even

if the sample is as large as one thousand. Additionally, the application to the UK data

illustrates that this relative disadvantage increases as we consider smaller samples. In

any case, this drawback at estimating λ represents an advantage at estimating π given

that the method is basically devoted to minimize the pricing errors. In this paper, we

take advantage of the one-to-one mapping between Beta and SDF estimators in order

to transform the Beta estimators into SDF units. By doing so, we are able to perform a

fair comparison of the simulated standard errors because even though the values do not

coincide numerically, they will have the same measure units.

Out study contributes to the asset pricing and financial econometrics literature, where

it has become common to compare the performance of different econometric procedures

3Graham and Harvey (2001) find in a survey that almost 74% of the respondents (Chief Financial
Officers - CFOs) used “always or most of the times” the CAPM to calculate the cost of capital for
their projects versus 40% of the CFOs that used the average historical returns of a stock. This second
method – average historical returns of a stock – can be considered a particular version of the SDF
method. Our results have an economic importance due to the estimation of the cost of capital, as every
increase/decrease of 1% in the cost of capital due to the estimation variance, can be translated into an
increased/decreased $1MM additional cost per every $100MM project valuation.
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either within the Beta framework or within the SDF method. For example, Jagannathan

and Wang (1998) compare the asymptotic efficiency of the two-stage cross-sectional re-

gression and of the Fama-MacBeth procedure. Shanken and Zhou (2007), analyze the

finite sample properties and empirical performance of the Fama-MacBeth maximum like-

lihood approach and of the GMM for Beta pricing models. Other key examples are Am-

sler and Schmidt (1985), Velu and Zhou (1999), Farnsworth et al. (2002), Chen and Kan

(2004), Kan and Robotti (2008), and Kan and Robotti (2009). However, only recently

there have been initial attempts to evaluate the performance in finite samples of the Beta

versus the SDF approaches, and this is where our main interest lies, because this has

become a growing research field in the econometrics of asset pricing models.

In a first attempt to evaluate the performance in finite samples of the Beta versus

the SDF approaches, using a standardized single-factor model, Kan and Zhou (1999)

show that the SDF method is much less efficient than the Beta method. Jagannathan

and Wang (2002), Cochrane (2001), and Cochrane (2005) have debated this conclusion in

a non-standardized single-factor model and assuming joint normality for both the asset

returns and the factors; they conclude that the SDF method is as efficient as the Beta

method for estimating the risk premia. In addition, they find that standard specification

tests are equally powerful in either of the two frameworks. Furthermore,Kan and Zhou

(2001) have showm that, under more general distributional assumptions and considering

non-standardized factors, inference based on λ can still be less reliable than inferences

based on δ, especially in realistic situations where the factors are leptokurtic. Contributing

to this debate, Ferson (2005) have reported that when the two methods correctly exploit

the same moments they deliver nearly identical results. The interest about the topic

has recently attracted additional research. For example, Lozano and Rubio (2011) show

evidence suggesting that inference on δ and π is more reliable than inference on their

corresponding estimators of λ and α. On the other hand, Peñaranda and Sentana (2015)

show that a particular GMM procedure leads to numerically identical Beta and SDF

estimates.

In this paper, we advocate that the core difference between the SDF and the Beta
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methods is a matter of trade-off between efficiency versus robustness. Commonly in econo-

metrics, a robust approach places fewer restrictions on an estimator but pays a precise in

terms of resulting precision. In this sense, the SDF method does not place any restriction

to λ, whereas the Beta method explicitly incorporates the definition of δ as a subset of

the moment restrictions. Therefore, it may be reasonable to expect that the Beta method

should be more efficient than the SDF method and, conversely, that the SDF method may

be more robust than the Beta method. As a result, the choice of estimate and evaluate

an asset pricing model by either the SDF or the Beta methods, boils down to a choice

between efficiency versus robustness and the decision ought to depend on the goals of the

researcher. In particular, if the main interest lies with the inference of the risk premia,

the Beta method is likely to provide more accurate estimates vs. the SDF method; yet,

if the main concern were to achieve lower pricing errors, the SDF method should be im-

plemented. Hence, there is no method that unconditionally dominates the other–rather

they are complementary, and they should not be considered as empirically equivalent.

Regarding the Beta method, there is no disagreement in the literature about which

set of moments have to be included in GMM estimation. Yet, there are two dominant

and subtly different SDF representations in the literature that leads to exploit alternative

sample moments. The first strategy defines the SDF as a linear function of the factors.

However, Kan and Robotti (2008) point out that this is problematic because the specifi-

cation test statistic is not invariant to an affine transformation of the factors. Therefore,

in our study we also consider an alternative specification that defines the SDF as a lin-

ear function of the de-meaned factors. These two SDF variants are also known as the

un-centred and centred forms, respectively. In our paper, these alternative SDF defini-

tions and methods are then applied to estimate and evaluate the single-factor CAPM

of Sharpe (1964), Lintner (1965) and Mossin (1966); the three factor Fama and French

(1993); the four factor Carhart (1997), and the three factor of Lozano and Rubio (2011)

(RUH) models in an application to US data. We also provide some illustrative results

using a reduced UK sample.

There are two additional contributions that we offer that derive from differences in our
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finite sample approach with respect to previous, similar studies that allow us to obtain a

number of insights. The first is that we assume factors and returns are drawn from their

empirical distribution. The second is that we evaluate not only single, but multi-factor

linear asset pricing models. By doing so, we examine the performance of the estimation

methods in the presence of highly non-normal distributions, as it actually happens in

realistic applications. Furthermore, we use a wide range of sets of test assets in order to

address the tight factor structure problem described by Lewellen et al. (2009).

The debate on the differential performance of alternative estimation methods in asset

pricing research is far from being exhausted. Furthermore, the available results in the

extant literature usually rely on the evaluation of a single-factor model which, while still

an important benchmark, fails to span the breadth of factor-based models used in the

literature as well in practice. In fact, multi-factor pricing models are by far the most

commonly used in empirical applications and they incorporate factors with more extreme

non-normalities than the market portfolio factor itself. For instance, in our sample, the

momentum factor has similar mean and variance as the market factor; nonetheless, it is

almost three times more leptokurtic. Likewise, the market factor is close to displaying a

symmetric distribution, although skewness is positive in the case of the size and value

factors, but markedly negative in the case of the momentum factor. Table I contains

descriptive statistics for the factors and test portfolios used in this paper and supports

our remarks above.

[Place Table I about here]

The outline of the rest of the paper is as follows. Section II presents the methodology,

Section IV reports our analytical results, Section IV provides a few illustrative empirical

results, while Section V concludes.
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II. A Review of the Outstanding Methodological

Issues

In order to estimate and evaluate the Beta and SDF representations of a generic asset

pricing model, we follow the GMM procedure by Hansen (1982). This guarantees that we

can retrieve valid inferences even if the assumptions of serial independence, conditional

homoskedasticity, and/or normality are not fully realistic in practice. 4

A. Beta method

Denote rt a vector of N stock returns in excess of the risk-free rate and ft a vector of K

economy-wide pervasive risk factors during period t. The mean and the covariance matrix

of the factors are denoted by µ and Ω, respectively, where µ =E[ft], and Ω = Cov(ft).

Under the Beta representation, a standard linear asset-pricing model can be written as

E[rt] = Bδ, (1)

where δ is the vector of factor risk premia, and B is the matrix of N ×K factor loadings

which measure the sensitivity of asset returns to the factors, defined as

B ≡ E[rt(ft − µ)′]Ω−1. (2)

Equivalently, we can identify B as a parameter in the time-series regression

rt = φ+ Bft + εt, (3)

where the residual εt has zero mean and covariance Σεt , and it is uncorrelated with the

factors ft. We consider the general case where the factors may have non-zero higher-order

moments. We define κ3 as the coskewness tensor and κ4 the cokurtosis tensor.5 The spec-

4For a in-depth discussion of GMM applied to the estimation and specification testing of asset pricing
models see Campbell et al. (1997), Jagannathan et al. (2002), and Cochrane (2005).

5Coskewness and cokurtosis have been investigated in asset pricing studies such as Harvey and
Siddique (2000), Dittmar (2002) and Guidolin and Timmermann (2008). A tensor is an N -dimensional
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ification of the asset-pricing model under the Beta representation in equation (1) imposes

a number of restrictions on the time-series intercept, φ = (δ − µ)B. By substituting this

restriction in the regression equation, we obtain:

rt = B (δ − µ+ ft) + εt where:

 E [εt] = 0N

E [εtf
′
t ] = 0N×K

. (4)

Hence, the Beta representation in equation (1) gives rise to the factor model in equa-

tion (4). The associated set of moment conditions g of the factor model are:

E[rt −B(δ − µ+ ft)] = 0N ,

E[[rt −B(δ − µ+ ft)]f
′
t ] = 0N×K .

(5)

However, when the factor is the return on a portfolio of traded assets, as in the single

and multi-factor models analyzed in this paper – the CAPM, Fama-French, RUH, and

the Carhart’s factor models – it can be easily shown that the estimate of µ (the sample

mean vector of the factors) is also the estimate of the risk premium δ. Therefore, given

δ = µ, the moment conditions given in equation (5) simplify to:

E[rt −Bft] = 0N ,

E[(rt −Bft)f
′
t ] = 0N×K ,

E[ft − µ] = 0K ,

(6)

where neither δ or µ appear in the first two set of moment conditions derived from

equation (6) so that it becomes necessary to include the definition of µ as a third set of

moment conditions to identify the vector of risk premia δ. Nevertheless, it is also possible

to estimate the last moment restriction of equation (6) outside the GMM framework

by computing µ = E[ft]. This is because the number of added moment restrictions in

equation (6) compared with equation (5) is the same as the number of added unknown

parameters. Hence, the efficiency of equation (5) and equation (6) is not affected by

imposing the additional N moment restrictions in E[ft−µ] = 0K . Following this logic, we

array: coskewness is then a 3-dimensional array while cokurtosis is a 4-dimensional array.
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can drop the factor-mean moment conditions without ignoring that it has to be estimated.

An additional moment condition to estimate the variance Ω could also be added to

equation (6). However the variance can also be estimated outside the GMM framework

without affecting the efficiency of the conditional mean estimators.

Following the usual GMM notation, we define the vector of unknown parameters

θ = [vec(B)′ µ′]′, where the vec operator ‘vectorizes’ the BN×K matrix by stacking its

columns, and the observable variables are xt = [r′t f
′
t ]
′. Then, the function g that captures

the moment conditions required by the GMM can be written as:

g(xt, θ) =


rt −Bft

vec[(rt −Bft)f
′
t ]

ft − µ


(N+NK+K)×1

, (7)

in which, for any θ, the sample analogue of E[g(xt, θ)] is

gT (θ) =
1

T

T∑
t=1

g(xt, θ). (8)

Therefore a natural estimation strategy for θ is to choose the values that make gT (θ) as

close to the zero vector as possible. For that reason we choose θ to solve

min
θ

gT (θ)′W−1gT (θ). (9)

To compute the first-stage GMM estimator θ1 we consider W = I in the minimization (9).

The second-stage GMM estimator θ2 is then the solution to the problem (9) when the

weighting matrix is the spectral density matrix of g(xt, θ1):

S =
∞∑

j=−∞

E[g(xt, θ1)g(xt, θ1)
′], (10)

where S is of size N ×N . Moreover, to examine the validity of the pricing model derived

from the moment restrictions in equation (6) we can test whether the vector of N Jensen’s
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alphas, given by α =E[rt] − δB is jointly equal to zero.6 This can be done using the J-

statistic which turns out to have an asymptotic χ2 distribution. The covariance matrix

of the pricing errors, Cov(gT ), is given by

Cov(gT ) =
1

T

[
(I −B(B′B)−1B′)S(I −B(B′B)−1B′)

]
, (11)

and the test is a quadratic form in the vector of pricing errors. In particular, the Hansen

(1982) J-statistic is computed as

First-stage: gT (θ1)
′Cov(gT )−1gT (θ1) ∼ χ2

N ,

Second-stage: TgT (θ2)
′S−1gT (θ2) ∼ χ2

N .
(12)

Both the first and second-stage statistics in equation (12) lead to the same numerical

value. However, if we weight equations (11) and (12) by any other matrix different to S,

such as E[rtr
′
t] or Cov[rt], this result no longer holds. Given that there are N +NK +K

equations and NK + K unknown parameters in the vector equation (7), the degrees of

freedom are equal to N .

B. The SDF method

To derive the SDF representation from the Beta representation we follow Ferson and

Jagannathan (1996), and Jagannathan and Wang (2002). First, we substitute the expres-

sion for B in equation (2) into equation (1) and rearrange the terms, to obtain

E[rt]− E[rtδ
′Ω−1ft − rtδ′Ω−1µ′] = E[rt(1 + δ′Ω−1µ− δ′Ω−1ft)] = 0N .

Again, if we were considering traded factors, then δ = µ so 1+ δ′Ω−1µ = 1+µ′Ω−1µ ≥ 1,

then divide each side by 1 + δ′Ω−1µ,7

E

[
rt

(
1− δ′Ω−1

1 + δ′Ω−1µ
ft

)]
= 0N .

6This approach is known as the restricted test, see MacKinlay and Richardson (1991).
7Even when the factors are not traded, it is common to suppose 1 + δ′Ω−1µ 6= 0.
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If we transform the vector of risk premia, δ, into a vector of new parameters λ as follows,

λ =
Ω−1δ

1 + δ′Ω−1µ
, (13)

then we obtain the following SDF representation, which serves at the same time the set

of moment restrictions g used to estimate the linear asset-pricing model,

E[rt(1− λ′ft)] = 0N , (14)

where the random variable mt ≡ 1 − λ′ft is the SDF defined as usual as E[rtmt] = 0N .

Alternatively, we could derive the Beta representation from the SDF representation by

expanding m and rearranging the terms.

From the moment restrictions and equation (14), we obtain the vector of N pricing

errors defined as π =E[rt]−E[rtf
′
t ]λ. The numerical solution to equation (14) can once

more be obtained by GMM.8 Let’s start by writing the sample pricing errors as

gT (λ) = −E[rt] + E[rtf
′
t ]λ, (15)

and by defining DU = −∂gT (λ)
∂λ′

= E[rtf
′
t ], the second-moment matrix of returns and

factors. The first-order condition to minimize the quadratic form of the sample pricing

errors, equation (9), is −
(
DU
)′

W[E[rt] −DUλ′] = 0, where W is the GMM weighting

matrix of size N ×N , equal to the identity matrix in the first-stage estimator and equal

to the spectral density matrix S, equation (10), in the second-stage estimator. Therefore,

the GMM estimates of λ are:

λ̂U1 =
((

DU
)′

DU
)−1 (

DU
)′

E[rt],

λ̂U2 =
((

DU
)′

S−1DU
)−1 (

DU
)′

S−1E[rt].
(16)

For illustrative purposes, we add an apex an U to λ̂ to indicate when the estimator is

obtained from the un-centred specification and with a C to indicate when it comes from

8This is useful given the need to undertake vast numbers of simulations. Similar simplifications of
multi-dimensional optimization problems for Beta models can be found in Shanken and Zhou (2007).
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the centred specification.

Specifying the SDF as a linear function of the factors as in equation (14) has been

very popular in the empirical literature. However, Kan and Robotti (2008) point out

that this is problematic because the specification test statistic is not invariant to an

affine transformation of the factors; Burnside (2007) also reaches similar conclusions.

Therefore, we also consider an alternative specification that defines the SDF as a linear

function of the de-meaned factors. Examples of this representation can be found in Julliard

and Parker (2005) and Yogo (2006). The alternative centred version of equation (14) is

therefore defined as:

E[rt[1− λ(ft − µ)]] = 0N . (17)

According to Jagannathan and Wang (2002) and Jagannathan et al. (2008), it is also

possible to estimate µ in equation (17) outside of the GMM estimation by computing

µ =E[ft]. This is because the number of added moment restrictions is the same as the

number of added unknown parameters. Hence, the efficiency of the estimator remains the

same. By following this logic, we can drop the factor-mean moment condition without

ignoring that it has to be estimated, to obtain analytical expressions for λ̂C1 and λ̂C2 . In

fact, the procedure to enforce the moment restrictions in equation (17) and solve the

GMM minimization is similar to that for the uncentred SDFU method. In particular, we

substitute E[rtft] for Cov[rtft] in equation (15) and define DC = −∂gT (λ)
∂λ′

as the covariance

matrix of returns and factors. As a result, under SDFC , the first and second stage GMM

estimates are given by:

λ̂C1 =
((

DC
)′

DC
)−1 (

DC
)′

E[rt],

λ̂C2 =
((

DC
)′

S−1DC
)−1 (

DC
)′

S−1E[rt].
(18)

Valid specification tests can be conducted by using (8) and (12), the only difference

being that we substitute B by DU = E[rtft] (the second moment matrix of returns and

factors) in the SDFU case, and by DC = Cov[rtft] (the covariance matrix of returns and

factors) in the SDFC case. The degrees of freedom in equation (12) are specific to the Beta
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method, as under the SDF method the degrees of freedom is equal to N − K, because

there are N equations and K unknown parameters in both equations (14) and (17).

Equations (11) and (12) are weighted by (10), as this is statistically optimal. This

approach was first suggested by Hansen (1982) because it maximizes the asymptotic

elicitation of information in the sample about a model, given the choice of moments.

However, there are also alternatives for the weighting matrix which are suitable for model

comparisons because they are invariant to the nature of the model and their parameters.

For instance, Hansen and Jagannathan (1997) suggest the use of the second moment

matrix of excess returns W = E[rtr
′
t] instead of W = S. Also, Burnside (2007), Balduzzi

and Yao (2007), and Kan and Robotti (2008) suggest that the SDFC method should use

the covariance matrix of excess returns W = Cov[rt]. We investigate the implications of

using these alternative weighting matrices later on.

C. Comparison of the methods

There is a one-to-one mapping between the factor risk premia collected in δ and the

SDF parameter vector λ, which facilitates the comparison of the two methods and that

exploits the possibility to derive an indirect estimator of λ by the Beta method.9 By

the same token, we can derive an estimate of δ not only by the Beta method but also

indirectly, by the SDF method. From the previous definition of λ in (13), we have:

λ = δ′ (Ω + δµ′)
−1
, or δ =

Ωλ

1− µ′λ
. (19)

In a similar way, by substituting (19) into π, we can find a one-to-one mapping between

π and α, estimated from the Beta method.

π =
Ω

Ω + δµ′
α, or α =

Ω + δµ′

Ω
π. (20)

9We thank to Raymond Kan for kindly sharing complementary notes on Kan and Zhou (2001) that
are at the roots of what follows.
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Yet, we cannot directly compare λ and δ, neither π and α because they are measured in

different units. An alternative to allow direct comparisons is to transform δ into λ units,

and α into π units following equations (19) and (20). For convenience, we will decorate

all Beta estimators with ‘∗’ to easily emphasize that they are Beta estimators.

In a first formal attempt to compare both methods, Kan and Zhou (1999) assumed

that the only factor had zero mean and unit variance, that is µ = 0 and Ω = 1. In this

standardized, single factor model, equations (19) and (20) simplify to λ = δ and π = α.

By assuming that the mean and the variance of the factor are predetermined without a

need for estimating them, Kan and Zhou (1999) ignored the sampling error associated

with the estimation of µ and Ω and concludes that the estimators obtained through the

Beta method were more efficient. Jagannathan and Wang (2002) and Cochrane (2001)

further investigated the effects of standardizing the factors, showing that in general,

predetermining the factor moments reduces the sampling error in the estimates from

the Beta method but not from the SDF method.10 Predetermining the values of µ and

Ω to be known constants, not necessarily µ = 0 and Ω = 1, gives an informational

advantage to the Beta method in terms of efficiency. Predetermining without estimation

implies ignoring the sampling errors associated with µ∗ and Ω∗: as a result, λ∗ becomes

considerably more efficient than when we solve the GMM problem implied by (6). In

our simulation analysis to follow, we therefore consider the case where µ and Ω must be

estimated.

To summarize, the Beta method gives the GMM estimate δ∗ while the SDF method

gives the GMM estimate λ. In this paper, we plan to we transform the estimate δ∗ into

an estimate of λ and then compare the variances of the sampling distribution of λ̂∗ and

λ̂. In the same way, we shall transform α∗ into an estimate of π and then compare the

efficiency of π̂∗ and π̂. We also compare the distributions of the Hansen (1982) classical

test of overidentification using the J-statistic of the transformed Beta Ĵ∗ and Ĵ from the

10However, under the moment restrictions derived from the Beta representation, (6), we only can
make inference on δ, not on λ. Yet to compare the methods using equation (19) requires an estimator
of Ω. One solution is to add an additional moment condition to (6) to estimate Ω. An alternative is to
estimate µ and Ω outside the GMM. In simulation results not reported in this paper, we find that the
efficiency of both alternatives is the same. Hence, in what follows, we elect to estimate Ω outside the
GMM.
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SDF method. The null hypothesis is that all pricing errors are zero. But before attacking

the issue through a set of simulation experiments, in the next Section we provide necessary

analytical background to our key Monte carlo results to follow.

III. Analytical results

In this Section we derive a general extension to the results in Jagannathan and Wang

(2002), in the sense that the factor ft is multivariate and is allowed to have a (joint) non-

Gaussian distribution. Our results will be useful to understand the simulation findings on

the trade-off between efficiency and robustness when using the Beta vs. the SDF methods.

PROPOSITION 1: Let ft represent the multivariate, systematic risk factors, and consider

the Beta representation in (1), and the SDF representation in (14). Then, the positive

definite asymptotic covariance matrix of the λ̂ parameters in the SDF model is

ACov(λ̂) =
(
(Ω + µµ′)

′
B′
)−1( 1

aεt
Σ−1εt −

1

a2εt
Σ−1εt B

(
A−1B +

1

aεt
B′Σ−1εt B

)−1
B′Σ−1εt

)
×

(B (Ω + µµ′))
−1
, (21)

where aεt and AB are a scalar whose expression is provided in Appendix A). The asymp-

totic covariance matrix of the Beta representation λ∗ parameter vector is

ACov(λ∗) = (Ω + µµ′)
−1
Sb

(
(Ω + µµ′)

−1
)′
, (22)

where Sb is the covariance matrix of gb(ft, λb) = (ft(1− λbft)), and λb = µ′ (Ω + µµ′)−1.

In the case of a single-factor, the estimators of the GMM estimators of the asymptotic

variance of the risk premium estimate from the SDF and Beta representations are,

Avar(λ̂)=
σ2(σ2 + µ2)

(σ2 + µ2)4
(
β′Σ−1εt β

)−1
+
σ2(σ4 + µ4)

(σ2 + µ2)4
+
κ4µ

2 + 2κ3(µ
3 − µσ2)− 3µ2σ2

(σ2 + µ2)4
,(23)
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and,

Avar(λ∗) =
((σ2 + µ2)− 2λbE[f 3

t ] + λ2E[f 4
t ])

(σ2 + µ2)
, (24)

with

E[f 3
t ] = κ3 + 3σ2µ+ µ3,

E[f 4
t ] = κ4 + 4κ3µ+ 3σ4 + 6σ2µ2 + µ4.

The GMM estimator of the asymptotic variance of the risk premium in the Beta repre-

sentation (24) can be approximated using the delta method by:

Avar(λ∗) =
σ2(σ2 + µ2)

(σ2 + µ2)4
(
β′Σ−1εt β

)−1
+

σ6

(σ2 + µ2)4
. (25)

The corresponding SDF and Beta pricing errors asymptotic variance estimators are

Avar (π∗) =
(
(Σεt + δµ′) Σ−1εt (Σ−1εt )′ (Σεt + δµ′)

)
Q
(
Sb −Db(D

′
bS
−1Db)D

′
b

)
Q′, (26)

and,

Avar (π̂) = Ss −Ds

(
D′sS

−1
s Ds

)
D′s. (27)

where

Q = [In,0n×n,−B,0n×1] , (28)

Ss = BABB′ + aεtΣεt , (29)

Ds = −B (Ω + µµ′. (30)

Proof. See appendix A.

The impact of higher-order moments is the result of second order terms of ft in

equation (14): the GMM estimation requires the estimation of the variance in (14) and
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therefore the third- and fourth-order terms of ft appear in the risk premia estimator.

In the case of the Beta method, higher-order moments do not impact the estimation of

the asymptotic variance, Avar(λ∗), because although the moments restrictions in (6) do

imply second-order terms for ft –and as a consequence there will be fourth-order terms

involved in the estimation– these do not affect the estimation of δ∗ nor the equivalent

risk premium λ∗, but rather simply affect the estimation of the other parameters (for

example, Ω). We now extract the implications of A for applied work in the form of a

By analyzing equation (3), and considering that the error εt will be assumed– at

least in general – to display a standard normal distribution, we note that the source of

non-normality of the returns will have its origins in the non-normality of the factors.

However, even if we were in the more general case in which εt may be itself non-Gaussian

and hence display non zero skewness and excess kurtosis, by Proposition 1, only the

higher-order moments of ft would be important for the efficiency properties of the Beta-

vs. the SDF-based risk premia estimates.

It must be acknowledged that the results from the Corollary depend on the assumption

that the Delta approximation is very accurate. Nevertheless, in actual applications the

systematic risk factors may possess distributions that are complex enough to interfere

with the quality of such approximation. Even though the Corollary may not apply in an

exact sense, the simulation experiments that follow show that in a qualitative sense, the

implications of the Corollary hold in all interesting cases.

IV. Simulation Experiments

Applied asset pricing research that routinely deals with estimation issues is often

confronted with data sets of finite, and occasionally rather modest, sample size.11 In

the case of US data, the time series dimension may attain approximately 1,100 monthly

historical observations; yet, already in the case of UK data, one may easily end up with

a sample size capped at about 450 observations. Even though the qualitative flavor of

11See Ahn and Gadarowski (2004) for an examination of finite-sample properties of several methods
to test model specification.
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our results concerning relative efficiency is hopefully clear, it remains imperative to grasp

the relative small sample performance of the two methods and therefore re-introduce

robustness consideration in our assessment of Beta vs. SDF-based methods. Because

finite-sample analytical results can be obtained only under specific, hence always fragile,

distributional assumptions on returns, factors, and errors, it is customary in literature to

resort to large-scale simulation designs , which allow to alter the simulation inputs and

therefore develop a deep understanding of how sensitive the results may with respect to

the various features of the data generating process that an empirical researcher is likely

to encounter in applied work.

We use bootstrap simulations to study whether the GMM estimators and test statis-

tics carry any biases and their relative efficiency. 12 In particular, we are interested in

evaluating the standard deviations of λ̂∗, λ̂, π̂∗, π̂, denoted as σ(·) and also the thickness

of the tails of the distribution of the J-statistic used to conduct specification tests. The

simulations represent a (nonparametric) bootstrap in the sense that we assume that the

factors ft are drawn from their empirical distribution which allows for non-normalities,

autocorrelation, heteroskedasticity and dependence of factors and residuals.

To artificially generate the excess returns we use the factor model, equation (4) where

t = 1, ..., T . We consider two experimental set ups:(i) a Monte Carlo simulation, where

the returns are generated by adding a multivariate normal error to the actual, observed

empirical factors, and (ii) an empirical simulation, where the returns are generated by

bootstrapping the observed historical returns, and factors are generated by bootstrapping

the observed historical factors. The first experiment is designed to test the analytical

asymptotic variance result reported in Section , while the second set of simulations serves

to measure the asymptotic variance of the different multivariate factor models analyzed.

As fas the overall sample size, T , is concerned, we consider four alternative time

spans: 60, 600, 2000, and 3000 months in the first experiment (Monte Carlo simulation)

and 60, 360, 600, and 1000 months in the second, bootstrapped empirical simulation. As

Shanken and Zhou (2007) argue, varying T is useful in order to understand the small-

12The simulations were executed using the THOR Grid computational cluster provided by the De-
partment of Economics,Finance and Accounting at the Maynooth University.
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sample properties of the tests and the validity of any asymptotic approximations invoked.

For instance, we examine a 5 year, 60-observation window because this may show how

distorted any inferences may potentially be from taking a really short sample, whilst this

is a commonly adopted horizon when using rolling window recursive estimation schemes.

Instead, a 30-year window corresponds approximately to the sample sizes inFama and

French (1992, 1993) and Jagannathan and Wang (1996) while the 600-month long sample

matches the largest sample sized examined by Jagannathan and Wang (2002). We also

examine T = 1000 months since this approximates the current size of the largest sample

available in Kenneth French’s public data library [January 1927 to December 2018 – 1104

months as of the writing of this paper], and could be considered as an approximation to

the true asymptotic variance. The estimators and specification tests are calculated based

on the T -long samples of factors and returns generated from the model. We repeat such

simulation experiments independently to obtain 10,000 draws of the estimators of λ, π

(the pricing errors) and J (the over-identifying restriction statistic).

While earlier studies (e.g., Kan and Zhou (1999, 2001), Jagannathan and Wang (2002)

and Cochrane (2005)) simply focussed on the CAPM model to compare the efficiency of

the Beta and SDF methods, we evaluate them with reference to standard multi-factor

models and in particular the Fama-French, RUH, and the Carhart four-factor models,

which means that K = 1, 3, and 4. The factors as the excess market return (RMRF),

size (SMB), value (HML) and momentum (UMD).13 To generate the excess returns from

equation (4) we first need the N × K matrix B, capturing the sensitivity of returns

to the factor(s). The B matrix previously defined in equation (2), represents the slope

coefficients in the OLS regressions of each N -test portfolio and K-factor model. We use

three values of N to generate B, i.e., the value weighted returns of the 10 size-sorted

portfolios, the 25 Fama-French portfolios (the intersections of the 5 size and 5 book-to-

market portfolios) and the 30 industry portfolios. As Lewellen et al. (2009) suggest, the

traditional tests portfolio used in empirical work such as the size and 25 size/value sorted

portfolios frequently present a strong factor structure, hence it seems reasonable to adopt

13See Fama and French (1993), for a complete description of these factors.
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other criteria (industry) for sorting. The combination of three different values for K and

three values for N give rise to nine B matrices, allowing us to add another criteria for

evaluating the method’s performance, in this case measured by efficiency.14

In Table I we report the descriptive statistics for the time series of factors and test

portfolios. These values are used to calibrate the simulations of the two sets of simula-

tions experiments, Tables II and III provide details about the parameters used in the

simulations. As can be noted in Table I for US data, the additional factors characteriz-

ing the multi-factor models display rather different statistical properties vs. the classical,

excess market return factor. In particular, with a sample kurtosis in excess of 30, the

momentum factor is almost three times more leptokurtic than the excess market return

(10.8). Moreover, while the market factor implies an unconditional distribution which is

essentially symmetric (sample skewness is 0.2), the size and value portfolio returns are

strongly right-skewed (1.9 and 2.2, respectively), while momentum returns exhibit mas-

sive left-skewness (-3.1). Thus, it is important to consider inferential and testing methods

for multi-factor asset pricing models that are able to reflect relative efficiency and robust-

ness in the light of the empirical properties of the data, such as extreme asymmetries and

excess kurtosis, when factors over and beyond market risk are considered. Studies such as

Kan and Zhou (2017) have considered asset pricing models under a Student-t distribution,

even though the magnitude of kurtosis is still limited for a t-distribution when asymp-

totics requires a finite fourth moment.15 For instance, in unreported simulations, we have

experimented with a Student-t distribution with five degrees of freedom that implies a

kurtosis of 6 for the RMRF factor, which is still much lower than the empirical value of

11 and found Therefore, in this paper we entertain the empirical distribution as the most

realistic alternative to the classical, multivariate normal and resort to a bootrstap design.

[Place Table II about here]

[Place Table III about here]

14The covariance matrix E[εtε
′
t | ft] in equation (4), is set equal to the sample covariance matrix of

the residuals obtained in the N OLS regressions.
15The asymptotic distribution theory for the GMM requires that returns and factors have finite fourth

moments. Hence, any marginal t-Student distribution for errors and factors must be characterized by
more than four degrees of freedom, which limits considerably tail thickness
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We find that the choice of following either the Beta or the SDF method to empirically

estimate and evaluate an asset pricing model can be framed in terms of a choice between

efficiency and robustness. In particular, we show that frequently the Beta method domi-

nates in terms of efficiency whereas the SDF method dominates in terms of robustness.

While in a celebrated paper Jagannathan and Wang (2002) argue that the Beta and SDF

approaches lead to parameter estimates with similar precision even in finite samples,

in what follows we illustrate that their conclusions are only valid under rather specific

conditions that cannot be uncritically generalized.

A. Monte Carlo Simulation: Convergence

Figures 1a, 1b, 1c, and 1d present the asymptotic variance results from estimating λ∗

by GMM under the Beta method and λU2 by GMM under the SDF method. The Monte

Carlo simulation parameters used are those in Tables II and III, respectively. We observe

that the asymptotic variance obtained from writing the asset pricing model in a Beta

framework (Avar(λ∗)) is always lower than the asymptotic variance from GMM applied

under the second-stage non-centered SDF method (Avar(λU2 )).16

[Place Figure 1 about here]

The results in Figure 1 show that, in the case of a single-factor model based on the

market risk factor, for which sample skewness is closer to zero and the kurtosis is the

lower vs. all single-factor models considered in our simulations, the Beta and the SDF

Monte Carlo simulations and the Beta and SDF analytic estimated asymptotic variances

converge towards the same value, consistent with Jagannathan and Wang (2002). Never-

theless, in the case of the size, value, and momentum single-factor models, the SDF esti-

mated asymptotic variance is always higher than the one estimated in a Beta framework:

16Results for the first-stage SDF (Avar(λU1 )) and first-, and second-stage centered methods
(Avar(λC1 ), Avar(λC2 )) are not reported, but the resulting variances are all uniformly higher than the
second-stage non-centered SDF method (Avar(λU2 )).
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the higher third-order cumulant (κ3) produces an increase in the asymptotic variance,

consistent with analytical results in the Appendix A.

B. Bootstrap simulations: Comparison of λ estimators

Tables IV and V compare the performance of Beta and SDF methods at estimating

λ by the single-factor CAPM model using US data. As one would expect, our results are

qualitatively and quantitatively similar to those in Jagannathan and Wang (2002). In

particular, Table IV shows that the expected value and the standard error of λ̂∗ and λ̂

are indeed similar. In fact, we cannot reject the null hypothesis that the standard errors

of the Beta estimators are equal to the standard errors of the SDF estimators in most

of the cases. Therefore, under a specific, single-factor framework there are virtually no

differences in terms of efficiency between the Beta and SDF methods. One of the key

implications of this result is that there are no significant advantages to applying the

Beta method to nonlinear asset pricing models formerly expressed in SDF representation

through linear approximations.

[Place Table IV about here]

Table IV allows us to compare σ(λ̂∗) versus σ(λ̂) instead of σ(δ̂) versus σ(λ̂) in order

to avoid misleading conclusions driven by scaling issues. However, if we consider the

possibility of intrinsic differences among the methods, the expected values of λ̂∗ and λ̂

are not necessarily similar, at least in general. For this reason, it is convenient to compute

ratios of relative standard errors such as σr(λ) = σ(λ)/E(λ). By doing so, we obtain an

accurate measure of the relative efficiency of the methods. These results are presented in

Table V.

[Place Table V about here]

Ratios close to one represent a high degree of similarity of the efficiency of both

methodologies at estimating λ. Ratios in excess of one suggest that applying the Beta
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method provides more accurate estimators of risk premia (even in finite samples and net

of scaling effects) vs. the SDF method. Given that one is generally interested in testing

the null hypothesis that the estimator is equal to zero, ratios such as those reported in

Table V offer a good indication of which method may lead to the most accurate inferences.

In particular, all ratios in Table V are slightly in excess of one, which means that the

Beta method leads to lower standard errors when estimating the CAPM market risk

premium. In general, the values of the ratios decline as we increase the size of the sample

while, as expected, second-stage SDF estimators of λ are more efficient than first-stage

estimators. In addition, the un-centred SDF specification reveals a marginal advantage

when compared to the centred specification, probably as a result of the additional moment

restrictions that derive from centering.

Even though our set of simulation experiments offer a clear-cut perspective on effi-

ciency matters, our original contribution regarding the comparison of σr(λ) across rep-

resentations of the asset pricing models focuses on of multi-factor asset pricing models.

Tables VI, VII and VIII report the ratios of relative standard errors for the risk premia

estimators derived from the Beta and SDF methods in the case of the Fama-French, RUH,

and Carhart models, respectively.

[Place Table VI about here]

[Place Table VII about here]

[Place Table VIII about here]

The corresponding expected values and standard errors for the estimators of λ derived

from the multi-factor asset pricing models are in Tables IX, X and XI. We begin by de-

scribing the results obtained in the case of the Fama-French model, which is characterized

by K = 3, i.e., the market, size, and the value factors.

[Place Table IX about here]
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[Place Table X about here]

[Place Table XI about here]

The first (upper) panel of Table VI is comparable to Table V because in both cases

the estimated λ corresponds to the market factor. Thus, it is not surprising to find a

similar pattern which reinforces the conclusion that there are no significant differences in

the inferential precision obtained by alternative asset pricing model representations when

estimating the parameters associated with the market risk premium. The un-centred SDF

method is again more efficient than the centred SDF method at estimating market risk

λ. In this case, the second-stage un-centred method is marginally more efficient than the

Beta method for samples smaller than T = 1000.

Contrary to the case of the market risk factor, the standard error of the Beta estima-

tors of the risk premia associated to the size and value factors are significantly smaller

than the corresponding standard errors of the SDF-based estimators. This is evident from

the ratios in excess of one appearing in the second and third panels of Table VI, especially

in the case of the ratios derived for the value risk premium. These results suggest that

the empirical equivalence of the two ways to represent linear factor models may strongly

depend on which factors are included in the specification of the asset pricing model. In

particular, the market factor does not pose a challenge to the SDF method whilst the

value factor can show significant variation across representations, according to the σr(λ)

ratios. For instance, the relative standard error the λ estimates from the un-centred, first-

stage SDF method can be more than twice as big as the relative standard errors from

the Beta representation. Beta estimators are even more efficient than second-stage SDF

estimators, which by construction are intended to increase the estimation efficiency of λ̂.

The second multi-factor asset pricing model we examine in this paper is the RUH, in

which the priced factors are market, momentum, and value. The estimation of the RUH

model allows us to compare the efficiency of the estimator associated with the market

and value factors in previous tables and introduces novel results for momentum.
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The ratios of the relative, normalized standard errors σr(λ) associated to the market

risk premium are now slightly below one; however the standard errors σ(λ) are not sig-

nificantly different in most cases. However, the magnitude of the efficiency ratios in the

case of the value risk premium are similar to the ones of the Fama-French model in Table

VI. The second panel of Table VII shows the ratios for the momentum premium, which

turn out to be somewhat larger than the ratios obtained for the value factor. Here, we

find that the SDF representation may face severe difficulties in small samples, a fact that

is reflected in massive (in-)efficiency scores ranging between 20.7 and 10.5.

The third and last multi-factor asset pricing model we have analyzed is Carhart’s

model, that features as factors the market, size, value, and momentum. Although the

elaboration of simulation results for the well-known multi-factor models by Fama-French,

RUH, and Carhart represents our core contribution, in the case of Carhart’s model we

also present results for test portfolios and the typical sample size faced by researchers

using shorter, UK data. We start by displaying the normalized, relative standard errors

of Carhart’s model λ estimators in Table VIII, with reference to US data.

The results for Carhart’s risk premia estimated on US data support the argument that

the efficiency of the different methods/representations depends on the specification of the

factors. The lower ratios of relative standard errors of the λ estimators are those related to

the size factor, followed by market, value, and are the highest for the momentum factor.

If the Beta and SDF representations were equally efficient, these ratios should instead

be similar and close to one across all factors. Clearly, in Table VIII, this fails to be the

case, and this suggests that the inferences based on the SDF method may marginally be

superior to Beta-driven ones in first and second panels which correspond to the results

associated with the market and size factors, whilst Beta estimators outperform the SDF

ones in the third and fourth panels, displaying efficiency results for value and momentum.

One might counter that the results in Tables VI, VII and VIII may be partially

driven by the additional factors that had failed to be investigated in earlier literature,

and not by any structural differences of GMM estimators of risk premia across alterna-

tive representations of the linear factor models. To address this possibility, we estimate
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four alternative single-factor asset pricing models. In each case, the model just includes

one of the Fama-French-Carhart risk factors at the time, i.e., the market, size, value,

and momentum. The ratios of the relative, normalized standard errors of the Beta- vs.

the SDF-based inferences for these single-factor models are reported in Table XII. The

corresponding expected values and standard errors are shown in Table XIII.

[Place Table XII about here]

[Place Table XIII about here]

The evidence in Table XII shows that the Beta representation leads to more accurate

inferences than the SDF one, at least in terms of inferences on the risk premia. The key

implication of Table XII is that, because it is built by setting K = 1 in all the single.-

factor models we experiment with, we artificially fix every element in the assessment of

the pricing models except for the assumed risk factor. Given that ratios across panels

are different, the statistical characteristics of each factor as well as their relation to the

test portfolios are presumably the main drivers behind the differences of the methods at

estimating λ.

C. Inference on Pricing Errors

We now turn our attention to the pricing errors estimates π̂, π̂∗, to their corresponding

standard errors σ(π̂), σ(π̂∗) , and the associated Ĵ , and Ĵ∗ statistics. A given represen-

tation of an asset pricing model would turn out to display a superior robustness vs. the

other if the simulated standard error of the pricing errors were lower.

To better understand where the advocated trade-off between efficiency and pricing

robustness comes from, we need to briefly describe the set of moments used in estimation

under each representation. On the one hand, the traditional Beta GMM restrictions

incorporate three sets of moments: (1) the N asset pricing restriction which define the α

vector; (2) the N ×K zero covariances between the errors and the factors; and (3) the

K definitions of δ, which equals the mean of the traded factors. Therefore, by imposing
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the definition of δ, the Beta approach increases its relative estimation efficiency. On the

other hand, the SDF representation is simply based on the N asset pricing restrictions

for the un-centred specification which defines π; and on the N asset pricing restriction

plus the K mean definitions for each of the factor risk premia in the case of the centred

specification. However, the inferences based on the SDF representation fail to impose the

definition of λ. As a result, they allow for freely varying risk premia estimates in order to

achieve lower mean pricing errors, favoring pricing robustness over efficiency. By the same

token, the specification tests derived under the Beta representation tend to under-reject

in finite samples while the SDF-based tests approximately display the correct size.

Table XIV shows the relative standard errors of the pricing errors for the single and

multi-factor models. Clearly, most of the ratios of the normalized standard errors of the

pricing errors are now below one and this tends to be stronger in the case of smaller vs.

larger sample sizes. Table XV presents the values used in the construction of Table XIV.

[Place Table XIV about here]

[Place Table XV about here]

D. Further Robustness Checks

In a first additional inquiry, we explore the specific role of the sign of the skewness of

the factors. We find that such skewness is likely to determine the sign of λ rather than

the sign of δ. To clarify this finding, it is practical to describe the un-centred SDF method

as a cross-sectional regression of mean excess returns on the second moment matrix of

returns and factors. Thus, the N moment restrictions which define π are equal to the

product of λ and the second moment matrix of returns and factors minus the expected

returns. It turns out that if the (single, for simplicity) factor is left-skewed, it is more

likely that the second moment covariance matrix between returns and factors would be

negative. When this occurs, λ should be negative in order to minimize the pricing errors.

Naturally, a negative λ is not what we normally expect, and it usually remains difficult
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to give it an economically meaningful interpretation. This is unlikely to occur under the

Beta method because a subset of the moment restrictions define the value of δ. However,

what does decrease the efficiency in the estimation of the λ risk premia, actually increases

the robustness of the SDF representation-based inferences.

Perhaps more important is the effect of the magnitude of the second moment matrix

of returns and factors over λ. Our (unreported, but available upon request) experiments

confirm that there is a strikingly close relationship between a low covariance between fac-

tors and returns (in pairs), and highly volatile estimators of λ. This is easy to grasp when

such covariances are slightly in excess of zero: then λ should be considerably large in order

for the product between risk premia and the risk exposures implied by such covariances

to equate the expected returns. In the same way, if the value of the covariance between

the factors and returns is slightly negative, then λ should be considerably negative to

allow the product described above to satisfy the pricing restrictions in the sample. This

of course represents a valid reason to favour the inclusion of factors which display large

covariation with asset returns in SDF models.

Because we have reported results for two different implementation, centered and un-

centered, of the SDF representation, it is of interest to also analyze their relative per-

formance, even though this is not the main core of our paper. The standard error of λ

is consistently lower for the un-centred representation across model representations and

sample sizes. This may reflect the additional K moment restrictions that appear in the

centred characterization that evidently decreases estimation efficiency of λ relative to the

un-centred specification. Regarding the standard deviation of the pricing errors estimates

of π, the first-stage un-centred representation also delivers lower standard errors relative

to the first-stage centred representation; however this is less evident for the second-stage.

V. Conclusion

The interest in learning about the asymptotic and finite sample properties of pa-

rameter estimators (and their functions) in asset pricing models, like risk premia and
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pricing errors, have attracted the attention of researchers for decades. This attention is

motivated by an extensive list of theoretical and empirical applications mainly – but not

exclusively – in economics and finance. It is not uncommon to find examples in which

different econometric approaches involve a trade-off between efficiency and robustness

since the most efficient estimators may possess this property at the cost of higher pricing

errors and vice versa. However, to best of our knowledge, this is the first time in which

such a formal dichotomy is explicitly used to better understand the difference between

the statistical properties of inferences derived from the Beta and SDF representations.

The simulation evidence that we have presented in this paper is useful to researchers and

practitioners because they could choose a proper procedure given the goals of their appli-

cation, i.e., whether accurate pricing and model over-identification testing may be more

relevant vs. the goal of producing accurate estimates of the risk premia. For instance, in

cost of capital estimation or when multiple asset pricing models need to be compared, a

choice for robust pricing and testing guaranteed in many occasions by a SDF framework

may be sensible, while in portfolio choice and asset management applications where to

have a clear idea of what risks are compensated and in what amount, appears of primary

importance and probably best obtained from a Beta representation of the model.

The debate on the relative, finite sample performance of the GMM as applied to

alternative ways to write linear factor pricing models appears to be open. Given the

findings in Jagannathan and Wang (2002) to Kan and Zhou (1999), common wisdom

is that alternative ways to represent standard linear pricing models does not matter

much in terms of inferential efficiency, see for example, Cochrane (2001), Smith and

Wickens (2002), Cochrane (2005), Nieto and Rodŕıguez (2005), Vassalou et al. (2006),

Wang and Zhang (2006), Balvers and Huang (2007), Jagannathan et al. (2008), Cai

and Hong (2009), and Brandt and Chapman (2018). On this background, our driving

motivation is that in the existing literature the comparisons between Beta and SDF

representations are conducted under sensible but rather specific conditions that appear

to be insufficient to differentiate the relative performance of GMM inferences, in particular

concerning the number of factors (typically one, as in the CAPM) and their distributional
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departures from normality (typically, modest). Once we relax these conditions, we show

that important differences between the strength and usefulness of the inferences on the

two otherwise equivalent methods of representation emerge. We find evidence suggesting

that the Beta method leads to more precise risk premia GMM estimators while the SDF

method leads to better pricing error estimators, in terms of efficiency. We evaluate the

magnitude of the resulting efficiency losses and illustrate what are the drivers of such

differential performance.

As always, there are a number of possible extensions that it may be worthwhile to

pursue. Chiefly, it may be of high relevance to the literature to explore what happens to

GMM estimators when one considers also the non-traded factors. In principle, there is no

reason to expect a similar pattern to hold. For example, Kan and Robotti (2008) show

that the standard errors under correctly specified vs. potentially misspecified models are

similar for traded factors, while they can differ substantially for non-traded factors such

as a scaled market return factor and the lagged state variable CAY. One additional ex-

tension would consist of providing examples of the economic value that can be generated,

especially in the presence of many factors deviating from joint normality, in financial

applications (for instance, capital budgeting vs. portfolio selection) in which accurate

pricing vs. efficient estimation of the risk premia may carry differential importance.
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Appendix A. Proof Proposition 1 – Higher-order

Moments in Empirical Asset Pricing

Estimation

Proof. Before calculating the asymptotic variance of the SDF and the Beta methods, we

define tensor operations. Let T1 be a tensor of dimension N1 ×N2 × · · · ×Np, and T2 a

tensor of dimension M1 ×M2 × · · · ×Mo, with all the elements N1, . . . , Np,M1, . . . ,Mo

greater than one and p > o without loss of generality, we define the expansion tensor

product,

⊗E(T1, T2)i1,...,im,im+1,...,im+p = T1i1,...,ip × T2i1,...,io

as the result of the expansion of tensors X1 and X2 in a tensor of dimension N1 ×N2 ×
· · · × Np ×M1 ×M2 × · · · ×Mo. Consider the case where N1 = M1, . . . , No = Mo. The

reduction tensor product, is defined as,

⊗R(T1, T2)ip+1,...,ip+o = T1i1,...,io × T2i1,...,io ,

the tensor of reduced dimension Np+1×Np+2×· · ·×No that results from the dot-product

of tensors T1 and T2.

A.1 Asymptotic variance SDF method

In the case of the SDF method, we calculate the GMM estimator asymptotic variance.

First, we consider the general case where δ, and µ in equation (13) can be different. Define

gs(rt, ft, λ) = rt(1− λft), the covariance matrix of gs(rt, ft, λ), in the case the factor f is

non-Gaussian and has higher-order moments, is:

Ss = E[gs(rt, ft, λ)gs(rt, ft, λ)′]

= B
(
⊗R (⊗R (κ4, λ) , λ) +

2δ (⊗R (κ3, λ)λ)′ + 2⊗R (κ3, λλ
′µ− λ) +

Ω (IN + 4(λλ′µ− λ)δ′ + (λ′µµ′λ)IN − 2λ′µIN) + δδ′λ′Ωλ+

(δδ′ + λ′µµ′λδδ′ − 2λ′µδδ′)
)
B′ +

(1− 2λ′µ+ λ′µµ′λ+ λ′Ωλ) Σεt . (A1)

The elements in (A1) are sorted from the more complex (a tensor of fourth-order, to most

simple (a tensor of second order – a matrix). Higher-order moments inside (A1) are the

result of higher-order expected values of the multivariate factor ft. These elements will

not appear in a single factor analysis such as Kan and Zhou (1999) or Jagannathan and
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Wang (2002). We split the elements of (A1). Define:

AB = ⊗R (⊗R (κ4, λ) , λ) + 2δ (⊗R (κ3, λ)λ)′ + 2⊗R (κ3, λλ
′µ− λ) +

Ω (IN + 4(λλ′µ− λ)δ′ + (λ′µµ′λ)IN − 2λ′µIN) + δδ′λ′Ωλ+

(δδ′ + λ′µµ′λδδ′ − 2λ′µδδ′) ,

and

aεt = 1− 2λ′µ+ λ′µµ′λ+ λ′Ωλ,

then the covariance of gs(rt, ft, λ) can be written as:

Ss = BABB′ + aεtΣεt (A2)

The inverse of (A2) is:

S−1s =
1

aεt
Σ−1εt −

1

a2εt
Σ−1εt B

(
A−1B +

1

aεt
B′Σ−1εt B

)−1
B′Σ−1εt . (A3)

The partial derivatives of gs respect to λ will produce a matrix:

Ds = E

[
∂gs
∂λ

]
= −B (Ω + δµ′) , (A4)

Then, using (A3) and (A33), we have the asymptotic variance of the SDF model is:

Avar(λ̂) =
(
D′sS

−1
s Ds

)−1
. (A5)

In the case of single factor models, and defining σ2 = Ω, the variance of the single-factor,

equations (A2), (A3), (A33), and (A5), have their equivalents in:

Ss =
σ2(σ4 + δ4) + κ4δ

2 + 2κ3(δ
3 − δσ2)− 3δ2σ4

(σ2 + µδ)2
ββ′ +

σ2(σ2 + δ2)

(σ2 + µδ)2
Σεt , (A6)

S−1s =
(σ2 + µδ)2

σ2(σ2 + δ2)
Σ−1εt −

(σ2 + µδ)2

σ2(σ2 + δ2)
×(

β′Σ−1εt β +
σ2(σ4 + δ4) + κ4δ

2 + 2κ3(δ
3 − δσ2)− 3δ2σ2

σ2(σ2 + δ2)

)−1
Σ−1εt ββ

′Σ−1εt ,(A7)

Ds = E

[
∂gs
∂λ

]
= −(σ2 + µδ)β, (A8)

Avar(λ̂) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Σ−1εt β

)−1
+
σ2(σ4 + δ4)

(σ2 + µδ)4
+
κ4δ

2 + 2κ3(δ
3 − δσ2)− 3δ2σ2

(σ2 + µδ)4

(A9)
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The equivalent asymptotic variance (A9) in the single factor Gaussian case is (Jagan-

nathan et al., 2002):

Avar(λ̂) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Σ−1εt β

)−1
+
σ2(σ4 + δ4)

(σ2 + µδ)4
. (A10)

The difference in asymptotic variance of the SDF method when modelling a Gaussian

factor, and a non-Gaussian vector comes from the higher-order moments terms:

κ4δ
2 + 2κ3δ(δ

2 − σ2)− 3δ2σ2

σ2(σ2 + δ2)
. (A11)

The additional term (A11) will increase the asymptotic variance for heavy tailed distri-

butions (greater κ4), and will decrease by higher negative skewness (lower values of κ3).

A.2 Asymptotic variance Beta method - joint estimation

We calculate the GMM asymptotic variance of the risk premiums for the case of

multifactor Beta models. First, we solve for the general case where the parameters, θ =

(δ,B, µ, σ2), are estimated jointly as in Jagannathan and Wang (2002). Define

gb(rt, ft, θ) =


gb(1)

gb(2)

gb(3)

gb(4)

 =


rt −B(δ + ft − µ)

(rt −B(δ + ft − µ))f ′t

ft − µ
(ft − µ)(ft − µ)′ −Ω



=


εt

εtf
′
t

ft − µ
(ft − µ)(ft − µ)′ −Ω

 , (A12)

where θ = (δ,B, µ,Ω). The covariance of gb (A12) is

Sb =


Σεt ⊗E (Σεt , µ) 0 0

⊗E (Σεt , µ) ⊗E (Σεt ,Ω) 0 0

0 0 Ω κ3

0 0 κ3 κ4 −⊗E (Ω,Ω)

 . (A13)

We need to calculate the partial derivatives of gb respect to the parameters θ. The first

partial derivative,
∂gb(1)

∂δ
= B. The partial derivative

∂gb(2)

∂δ
will produce the third-order

tensor,

∂gb(2)

∂δ
= −⊗E (B, µ) .
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The following partial derivatives are null:
∂gb(3)

∂δ
=

∂gb(4)

∂δ
=

∂gb(3)

∂B
=

∂gb(4)

∂B
=

∂gb(1)

∂µ
=
∂gb(2)

∂µ
=
∂gb(1)

∂Ω
=
∂gb(2)

∂Ω
= 0.

In the case of
∂gb(1)

∂B
, it will produce the following N ×N ×K third-order tensor:

∂gb(1)

∂B
= −




δ′

0 0 . . . 0
...

0 0 . . . 0


N×K

, . . . ,



0 0 . . . 0
...

0 0 . . . 0

δ′

0 0 . . . 0
...

0 0 . . . 0


, . . . ,


0 0 . . . 0

...

0 0 . . . 0

δ′




N×N×K

.

We need to define some tensor notations. Let us define the canonical basis:

e′ = [e1,:, e2,:, . . . , eN,:]1×N .

where every element of this vector is a matrix:

ei,: =



0 0 . . . 0
...

0 0 . . . 0

1 1 . . . 1

0 0 . . . 0
...

0 0 . . . 0


N×K︸ ︷︷ ︸

i−th row equal to one.

,

The identity tensor can be denoted using tensor notation as IN×N×K = ⊗E (e,1N×1).

Then, we can denote
∂gb(1)

∂B
as

δIN×N×K ≡ ⊗E (δe,1N×1) , (A14)

where δe =
[
[δ, . . . , δ]′ � e1,:, . . . , [δ, . . . , δ]

′ � eN,:
]

and � is the element wise multiplica-
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tion. The partial derivative
∂gb(2)

∂B
will produce a fourth-order tensor:

∂gb(2)

∂B
=

−




δ1µ1 + Ω1,1 . . . δ1µk + Ω1,k

0 . . . 0
...

0 . . . 0


N×K

. . .


δkµ1 + Ωk,1 . . . δkµk + Ωk,k

0 . . . 0
...

0 . . . 0




0 . . . 0

δ1µ1 + Ω1,1 . . . δ1µk + Ω1,k

0 . . . 0
...

0 . . . 0


N×K

. . .



0 . . . 0

δkµ1 + Ωk,1 . . . δkµk + Ωk,k

0 . . . 0
...

0 . . . 0


...

0 . . . 0
...

0 . . . 0

δ1µ1 + Ω1,1 . . . δ1µk + Ω1,k


N×K

. . .


0 . . . 0
...

0 . . . 0

δkµ1 + Ωk,1 . . . δkµk + Ωk,k




N×K×N×K

(A15)

Using a similar notation as in (A14), we denote the fourth-order identity tensor and the

corresponding partial derivative
∂gb(2)

∂B
as

IN×N×K×K = ⊗E (e,1N×K) , (A16)

∂gb(2)

∂B
= (δµ′ + Ω) IN×N×K×K ≡ ⊗E ((δµ′ + Ω) e,1N×N) . (A17)

The partial derivatives of the respect to the mean and the variance of the factor are
∂gb(3)

∂µ
= −IK×1 and

∂gb(4)

∂µ
= −IK×K . Then, the expected value of the partial derivatives

Db = E

[
∂gb
∂θ

]
is the following matrix

Db=E

[
∂gb
∂θ′

]
=


−B −δIN×N×K B 0

−⊗E (B, µ) − (δµ′ + Ω) IN×N×K×K ⊗E (B, µ) 0

0 0 −IK×1 0

0 0 0 −IK×K

 .(A18)

Define

S−1b = inv(Sb), (A19)
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then, from the resulting matrix V =
(
D′bS

−1
b Db

)−1
, the asymptotic variance of the δ∗

parameter is equal to the top left corner element of the matrix:

Avar(δ∗) = V1,1.

Using the Delta method, and the definition of λ in (19), the asymptotic variance for the

risk premium of the Beta method with multiple non-Gaussian factors is

Avar(λ∗) =

(
∂λ

∂δ

)(
∂λ

∂δ

)′
Avar(δ∗)

=

(
−δ
((

(Ω + δµ′) (Ω + δµ′)
′)−1

µ
)′

+ 1K×K (Ω + δµ′)
−1
)
V1,1.(A20)

The calculation of the asymptotic variance of the risk premium by using the Beta

method, for the case a single non-Gaussian factor has the corresponding equations to the

multifactor equivalents (A12), (A13), (A18), (A19), in

gb(rt, ft, θ) =


rt − (δ + ft − µ)β

(rt − (δ + ft − µ)β)ft

ft − µ
(ft − µ)2 − σ2

 =


εt

εtft

ft − µ
(ft − µ)2 − σ2

 , (A21)

Sb =


Ω µΩ 0 0

µΩ (µ2 + σ2)Ω 0 0

0 0 σ2 κ3

0 0 κ3 κ4 − σ4

 , (A22)

S−1b =
1

σ2



(µ2 + σ2)Ω−1 −µΩ−1 0 0

−µΩ−1 Ω−1 0 0

0 0 − σ2(κ4 − σ4)

σ6 − κ4σ2 + κ23

κ3σ
2

σ6 − κ4σ2 + κ23

0 0
κ3σ

2

σ6 − κ4σ2 + κ23

σ4

σ6 − κ4σ2 + κ23


, (A23)

Db = E

[
∂gb
∂θ′

]
=


−β −δIn β 0

−µβ −(σ2 + µδ)In µβ 0

0 0 −1 0

0 0 0 −1

 , (A24)
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We calculate
(
D′bS

−1
b Db

)−1

(
D′bS

−1
b Db

)−1
=



σ2 + δ2

σ2
(β′Ω−1β)

−1
+ σ2 − δ

σ2
(β′Ω−1β)

−1
β′ σ2 κ3

− δ

σ2
(β′Ω−1β)

−1
β

1

σ2 + δ2
Ω +

δ2 (β′Ω−1β)
−1
ββ′

σ2(σ2 + δ2)
0 0

σ2 0 σ2 κ3

κ3 0 κ3 κ4 − σ4


.(A25)

The asymptotic variance of the GMM estimation of δ∗ for the single factor non-Gaussian

case is

Avar(δ∗) =
σ2 + δ2

σ2

(
β′Σ−1εt β

)−1
+ σ2. (A26)

Applying the Delta method,17 the corresponding asymptotic variance of the λ∗ parameter

–equivalent to (A20)– is18,19

Avar(λ∗) =
σ2(σ2 + δ2)

(σ2 + µδ)4
(
β′Σ−1εt β

)−1
+

σ6

(σ2 + µδ)4
. (A27)

Considering (A5), (A20), and by applying some algebra with the support of equations

(A10) and (A27) the asymptotic variance of the risk-premium estimator result is yield.

A.3 Asymptotic variance Beta method - separate estimation

In our paper, µ = δ, and the estimation of the parameter B is separate from the

estimation of the parameters θ∗ = (δ, σ2) = (µ, σ2). Then, we have that to estimate the

asymptotic variance of the parameter δ∗ = µ∗, we define

gb(rt, ft, θ) =

(
ft − µ

(ft − µ)(ft − µ)′ −Ω

)
, (A28)

Sb =

(
Ω κ3

κ3 κ4 −⊗E (Ω,Ω)

)
, (A29)

17The use of the delta method requires that the parameter estimation–given the sequenceXt–converges

to a normal distribution,
√
T |XT − θ|

D−→ N(0, σ2). In the case the distribution of the factor deviates
from the normal distribution, the estimated parameters might deviate from the normal, and the Delta
approximation might underestimate the asymptotic variance. In our case, as we estimate δ separately
from B in the next subsection, we use the GMM asymptotic results to provide an exact estimate of the
asymptotic variance of δ without using the Delta method.

18The equation (A27) corrects the Jagannathan et al. (2002) approximation of the asymptotic variance

by using the Beta method, that has a difference of
σ2δ4

(σ2 + µδ)4
between the Beta and the SDF methods.

19We can observe that in the non-Gaussian case, when using the Beta method, the higher-order
moments do not affect the asymptotic variance of the risk premium estimation. This is consistent with
the Beta method being a first- and second-order only asset pricing model. In the case of the SDF model,
higher-order moments will discount risk premiums, therefore they will affect the asymptotic variance.
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and

Db=E

[
∂gb
∂θ∗′

]
=

(
−IK×1 0

0 −IK×K

)
, (A30)

then

Avar(λ∗) =

(
−δ
((

(Ω + δµ′) (Ω + δµ′)
′)−1

µ
)′

+ 1K×K (Ω + δµ′)
−1
)

Ω. (A31)

This is a Delta (first-order) approximation. A better approximation is made when con-

sidering the definition of λ into the GMM,

gb(ft, λb) = E[rtmt] = E[rt(1− λbft)] = (rt(1− λbft)) = 0,

That can be reduced to

gb(ft, λb) = (ft(1− λbft)) = 0. (A32)

The parameter λb is not estimated by the SDF method, but by the Beta method and

using (19), λb = µ′ (Ω + µµ′)−1. The covariance matrix of gb(ft, θ) in (A32) is:

Sb = E[gb(ft, λb)gb(ft, λb)
′]

= E[ftf
′
t − 2⊗R (λb,⊗E(ftf

′
t , ft)) +⊗R(λbλ

′
b,⊗E(ftf

′
t , ftf

′
t))].

The partial derivatives of gb respect to λb will produce a matrix

Db = E

[
∂gb
∂λ

]
= − (Ω + µµ′) , (A33)

Then, the asymptotic variance of λ∗ is equal to

Avar(λ∗) = Avar(λ∗b) = (Ω + µµ′)
−1
Sb

(
(Ω + µµ′)

−1
)′
. (A34)

In the case of single factors we have

Avar(λ∗) =
((σ2 + µ2)− 2λbE[f 3

t ] + λ2E[f 4
t ])

(σ2 + µ2)
, (A35)

with

E[f 3
t ] = κ3 + 3σ2µ+ µ3,

E[f 4
t ] = κ4 + 4κ3µ+ 3σ4 + 6σ2µ2 + µ4.
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A.4 Asymptotic variance pricing errors

We provide the asymptotic variances of the pricing errors. In both cases, SDF and

Beta methods, the asymptotic variance of the pricing error is found by defining a sample

mean of the estimator:

es(λ̂) =
1

T

(
T∑
i=1

gs(rt, ft, λ)

)
, (A36)

eb(θ) =
1

T

(
T∑
i=1

gb(rt, ft, θ)

)
. (A37)

The SDF pricing error π̂ will be equal to (A36) (Jagannathan and Wang, 2002), then by

Hansen (1982):

Avar (π̂) = Avar
(
eb(λ̂)

)
=

1

T

(
T∑
i=1

gs(rt, ft, λ)

)
= Ss −Ds

(
D′sS

−1
s Ds

)
D′s. (A38)

Consider that in the Beta method, the equivalent Jensen’s α is:

α∗ = Q∗e(θ∗) = [In,0n×n,−β∗,0n×1] e(θ∗). (A39)

Using equations (A37), (A38) and (20) the asymptotic variance of the pricing error is

yield:

Avar (π∗) =
(
(Σεt + δµ′) Σ−1εt (Σ−1εt )′ (Σεt + δµ′)

)
Q
(
Sb −Db(D

′
bS
−1Db)D

′
b

)
Q′.(A40)
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Appendix B. Tables

Table I. Descriptive statistics of factors and portfolios.

US factors and portfolios taken from Kenneth R. French library, January 1927 to
December 2018 (T = 1104). UK factors and portfolios taken from Alan Gregory library,
October 1980 to December 2017 (T = 447).

Factors Portfolios

Market Size Value Momentum 10 size 25 size-value 30 industry

US

Mean 0.6471 0.2096 0.3682 0.6617 0.8642 0.8786 0.7239

Variance 28.58 10.22 12.17 22.02 46.8924 47.9440 31.3499

Skewness 0.19 1.93 2.18 -3.06 1.3791 1.3957 0.3583

Kurtosis 10.81 22.28 22.18 30.90 18.3248 18.2319 11.8010

US - Recession Periods

Mean -0.4320 -0.1292 0.2696 0.6361 -0.4787 -0.4481 -0.3041

Variance 67.35 11.31 25.52 55.30 103.6166 108.4459 71.4597

Skewness 0.40 0.48 3.05 -3.24 1.4465 1.3667 0.5638

Kurtosis 6.83 5.02 22.84 21.98 12.3939 11.4992 7.5031

UK

Mean 0.5482 0.1318 0.2889 0.9794 0.8190 - -

Variance 19.35 9.59 9.90 18.03 21.3262 - -

Skewness -1.01 -0.13 -0.51 -0.93 -0.7562 - -

Kurtosis 6.86 5.82 9.41 8.50 6.6923 - -
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Table II. Parameter Values used in Monte Carlo Simulation: US data, 10 size-
sorted portfolios.

The table presents the parameters used for the Monte Carlo simulation to estimate GMM
under Beta and SDF methods. Parameters are estimated from single US factors and port-
folios taken from Kenneth R. French library, January 1927 to December 2018 (T = 1104).

Panel A: Market Factor

µ =0.6471, σ =5.3457, δ =0.6471, λ =0.0223, κ3 =28.4438, κ4 =8830.8782

Decile Portfolios

Small 2 3 4 5 6 7 8 9 Large

β

1.4187 1.3854 1.3285 1.2572 1.2287 1.2037 1.1514 1.1143 1.0628 0.9311

α

0.1951 0.0750 0.1006 0.1094 0.0772 0.1037 0.0708 0.0675 0.0288 -0.0051

Σε

40.9683 26.4672 19.2810 15.9265 11.5231 8.7891 6.9172 3.6288 1.7423 -2.9924

26.4672 21.0432 14.8231 12.5335 9.4669 7.1121 5.5034 3.0992 1.2590 -2.5093

19.2810 14.8231 12.7128 10.2017 7.7451 6.0527 4.5158 2.9101 1.2151 -2.1518

15.9265 12.5335 10.2017 9.9662 6.9964 5.6539 4.3061 2.7373 1.1963 -1.9928

11.5231 9.4669 7.7451 6.9964 6.3529 4.4908 3.4261 2.2858 1.0150 -1.6416

8.7891 7.1121 6.0527 5.6539 4.4908 4.5537 2.9280 2.1043 1.0706 -1.3824

6.9172 5.5034 4.5158 4.3061 3.4261 2.9280 3.2914 1.7930 0.9149 -1.1456

3.6288 3.0992 2.9101 2.7373 2.2858 2.1043 1.7930 2.1077 0.8522 -0.8831

1.7423 1.2590 1.2151 1.1963 1.0150 1.0706 0.9149 0.8522 1.2128 -0.4942

-2.9924 -2.5093 -2.1518 -1.9928 -1.6416 -1.3824 -1.1456 -0.8831 -0.4942 0.6792

Panel B: Size Factor

µ =0.2096, σ =3.1976, δ =0.2096, λ =0.0204, κ3 =63.0820, κ4 =2329.3833

Decile Portfolios

Small 2 3 4 5 6 7 8 9 Large

β

2.1964 1.9059 1.6321 1.4843 1.3097 1.1070 0.9908 0.8134 0.6319 0.3032

α

0.6529 0.5722 0.6183 0.6119 0.5979 0.6507 0.6082 0.6182 0.5841 0.5339

Σε

49.1522 39.8210 36.4736 33.5470 31.9046 32.7070 31.3220 30.5135 30.6135 27.9171

39.8210 38.7365 35.5968 33.3644 32.5677 33.1717 31.7548 31.3391 30.9958 28.4157

36.4736 35.5968 35.8935 33.1421 32.5133 33.2535 31.6684 31.6150 30.9928 28.1090

33.5470 33.3644 33.1421 32.5886 31.2411 32.0761 30.6112 30.4023 29.7651 26.8311

31.9046 32.5677 32.5133 31.2411 31.9316 31.9058 30.5595 30.4927 29.8437 26.9634

32.7070 33.1717 33.2535 32.0761 31.9058 33.4033 31.2926 31.2015 30.4507 27.1876

31.3220 31.7548 31.6684 30.6112 30.5595 31.2926 31.1114 30.1903 29.4565 26.3927

30.5135 31.3391 31.6150 30.4023 30.4927 31.2015 30.1903 30.7998 29.4141 26.2191

30.6135 30.9958 30.9928 29.7651 29.8437 30.4507 29.4565 29.4141 29.3838 25.8014

27.9171 28.4157 28.1090 26.8311 26.9634 27.1876 26.3927 26.2191 25.8014 24.4915
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Table III. Parameter Values used in Monte Carlo Simulation: US data, 10 size-
sorted portfolios.

The table presents the parameters used for the Monte Carlo simulation to estimate GMM
under Beta and SDF methods. Parameters are estimated from single US factors and port-
folios taken from Kenneth R. French library, January 1927 to December 2018 (T = 1104).

Panel C: Value Factor

µ =0.3682, σ =3.4880, δ =0.3682, λ =0.0299, κ3 =92.6417, κ4 =3282.2015

Decile Portfolios

Small 2 3 4 5 6 7 8 9 Large

β

1.3215 1.0101 0.8781 0.7841 0.6631 0.6651 0.5611 0.5238 0.4976 0.2951

α

0.6266 0.5996 0.6370 0.6343 0.6282 0.6377 0.6093 0.5958 0.5333 0.4888

Σε

77.2036 66.3564 58.9870 54.2554 50.6370 46.8608 44.5395 40.3482 36.7966 29.9806

66.3564 63.4395 56.5904 52.6359 49.9237 46.5579 44.1559 40.7427 37.1873 30.6963

58.9870 56.5904 53.7316 49.5204 47.2705 44.6110 42.1987 39.5844 36.2158 30.0150

54.2554 52.6359 49.5204 47.6225 44.7794 42.5227 40.2872 37.7428 34.6031 28.6167

50.6370 49.9237 47.2705 44.7794 44.1080 41.3551 39.2925 37.1520 34.2859 28.6418

46.8608 46.5579 44.6110 42.5227 41.3551 40.5448 37.9611 36.1645 33.5728 28.2310

44.5395 44.1559 42.1987 40.2872 39.2925 37.9611 37.3131 34.8500 32.4578 27.4493

40.3482 40.7427 39.5844 37.7428 37.1520 36.1645 34.8500 34.2225 31.4955 26.8597

36.7966 37.1873 36.2158 34.6031 34.2859 33.5728 32.4578 31.4955 30.4520 25.9737

29.9806 30.6963 30.0150 28.6167 28.6418 28.2310 27.4493 26.8597 25.9737 24.3724

Panel D: Momentum Factor

µ =0.6617, σ =4.6930, δ =0.6617, λ =0.0295, κ3 =-315.7859, κ4 =14986.8391

Decile Portfolios

Small 2 3 4 5 6 7 8 9 Large

β

-0.8723 -0.7138 -0.6682 -0.5838 -0.5502 -0.5373 -0.4702 -0.4723 -0.4548 -0.3434

α

1.6904 1.4439 1.4025 1.3093 1.2364 1.2382 1.1270 1.1012 1.0175 0.8247

Σε

81.6857 68.8806 60.2655 55.6434 50.7276 47.2306 44.5265 39.6965 36.0591 28.1299

68.8806 64.6311 56.8770 53.0932 49.4241 46.2851 43.6598 39.7564 36.1533 28.9266

60.2655 56.8770 53.2794 49.3051 46.2587 43.8098 41.2739 38.2313 34.8395 28.1163

55.6434 53.0932 49.3051 47.5951 44.0312 41.9589 39.5941 36.6677 33.5025 27.0181

50.7276 49.4241 46.2587 44.0312 42.7920 40.2110 38.1225 35.6563 32.7902 26.8634

47.2306 46.2851 43.8098 41.9589 40.2110 39.5691 36.9378 34.8153 32.2180 26.5570

44.5265 43.6598 41.2739 39.5941 38.1225 36.9378 36.2747 33.5359 31.1455 25.9092

39.6965 39.7564 38.2313 36.6677 35.6563 34.8153 33.5359 32.6494 29.9370 25.1703

36.0591 36.1533 34.8395 33.5025 32.7902 32.2180 31.1455 29.9370 28.9096 24.3221

28.1299 28.9266 28.1163 27.0181 26.8634 26.5570 25.9092 25.1703 24.3221 22.8367
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Table IV. Expected value and standard errors for CAPM model: US data, 10
size-sorted portfolios.

The table presents the expected value and the standard error of λ GMM estimates
under the Beta and the SDF methods. The returns and factors are generated under
the null hypothesis with the factors sampled from the empirical distribution. The
first estimator decorated with * are from the Beta method; the second and third
correspond to the first and second-stage un-centred SDF method; and the fourth
and fifth to the first and second-stage centred SDF method. The results are presented
for different lengths of time series observations, and they are based on 10,000 simulations.

T E[λ̂∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ̂∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

60 2.38 2.40 3.19 2.59 3.00 2.67 2.92 3.60 3.26 3.57

360 2.17 2.17 2.29 2.22 2.28 1.03 1.10 1.09 1.16 1.12

600 2.18 2.18 2.25 2.22 2.25 0.78 0.83 0.81 0.87 0.83

1000 2.14 2.14 2.18 2.18 2.20 0.62 0.66 0.63 0.68 0.65
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Table V. Relative standard errors for CAPM model: US data, 10 size-sorted port-
folios.

The table presents the relative standard errors of λ GMM estimates under the Beta

and the SDF methods, computed as σr(λ̂) = σ(λ̂)÷E(λ̂). The returns and factors
are generated under the null hypothesis with the factors sampled from the empirical
distribution. Estimators decorated with * are from the Beta method; with A and B to
the un-centred and centred SDF method; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different lengths of time series observations,
and they are based on 10,000 simulations.

T σr(λ̂
U
1 )÷ σr(λ̂∗) σr(λ̂

U
2 )÷ σr(λ̂∗) σr(λ̂

C
1 )÷ σr(λ̂∗) σr(λ̂

C
2 )÷ σr(λ̂∗)

60 1.0833 1.0045 1.1219 1.0581

360 1.0654 1.0046 1.0935 1.0324

600 1.0656 1.0030 1.0921 1.0288

1000 1.0658 1.0039 1.0918 1.0295
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Table VI. Relative standard errors for Fama-French model: US data, 10 size-sorted
portfolios.

The table presents the relative standard errors of λ GMM estimates under the Beta

and the SDF methods, computed as σr(λ̂) = σ(λ̂)÷E(λ̂). The returns and factors
are generated under the null hypothesis with the factors sampled from the empirical
distribution. Estimators decorated with * are from the Beta method; with A and B to
the un-centred and centred SDF method; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different lengths of time series observations,
and they are based on 10,000 simulations.

T σr(λ̂
U
1 )÷ σr(λ̂∗) σr(λ̂

U
2 )÷ σr(λ̂∗) σr(λ̂

C
1 )÷ σr(λ̂∗) σr(λ̂

C
2 )÷ σr(λ̂∗)

Market

60 0.9853 0.9649 1.0102 1.0042

360 1.0158 1.0024 1.0379 1.0247

600 1.0187 1.0043 1.0412 1.0279

1000 1.0229 1.0074 1.0447 1.0304

Size

60 0.7075 0.6684 0.5861 0.5613

360 1.1403 1.0304 1.1123 0.9963

600 1.1606 1.0453 1.1425 1.0230

1000 1.1717 1.0562 1.1600 1.0430

Value

60 2.3382 1.8642 2.7692 2.8484

360 3.0934 2.3801 3.1525 2.5604

600 3.1171 2.4012 3.1628 2.5191

1000 3.2271 2.4994 3.2641 2.5791
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Table VII. Relative standard errors for RUH model: US data, 10 size-sorted port-
folios.

The table presents the relative standard errors of λ GMM estimates under the Beta

and the SDF methods, computed as σr(λ̂) = σ(λ̂)÷E(λ̂). The returns and factors
are generated under the null hypothesis with the factors sampled from the empirical
distribution. Estimators decorated with * are from the Beta method; with A and B to
the un-centred and centred SDF method; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different lengths of time series observations,
and they are based on 10,000 simulations.

T σr(λ̂
U
1 )÷ σr(λ̂∗) σr(λ̂

U
2 )÷ σr(λ̂∗) σr(λ̂

C
1 )÷ σr(λ̂∗) σr(λ̂

C
2 )÷ σr(λ̂∗)

Market

60 0.9533 0.9134 0.9434 0.9232

360 1.0004 0.9868 1.0101 0.9992

600 0.9940 0.9842 1.0090 0.9991

1000 0.9924 0.9817 1.0109 0.9999

Momentum

60 2.4843 1.8939 20.7738 10.5442

360 3.3341 2.6710 5.2603 4.1297

600 3.4321 2.8270 4.5009 3.6950

1000 3.5491 2.8415 4.1864 3.3457

Value

60 1.6279 1.2432 2.5987 3.3452

360 2.6050 2.1012 3.0128 2.6525

600 2.7729 2.2583 3.0513 2.6226

1000 2.8326 2.2917 3.0234 2.5272
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Table VIII. Relative standard errors for Carhart model: US data, 10 size-sorted
portfolios.

The table presents the relative standard errors of λ GMM estimates under the Beta

and the SDF methods, computed as σr(λ̂) = σ(λ̂)÷E(λ̂). The returns and factors
are generated under the null hypothesis with the factors sampled from the empirical
distribution. Estimators decorated with * are from the Beta method; with A and B to
the un-centred and centred SDF method; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different lengths of time series observations,
and they are based on 10,000 simulations.

T σr(λ̂
U
1 )÷ σr(λ̂∗) σr(λ̂

U
2 )÷ σr(λ̂∗) σr(λ̂

C
1 )÷ σr(λ̂∗) σr(λ̂

C
2 )÷ σr(λ̂∗)

Market

60 0.9247 0.9078 0.9183 0.9261

360 0.9844 0.9787 0.9911 0.9861

600 0.9720 0.9658 0.9824 0.9775

1000 0.9737 0.9674 0.9877 0.9820

Size

60 0.0710 0.0682 0.0525 0.0525

360 0.7827 0.7292 0.6856 0.6543

600 0.8637 0.7912 0.7847 0.7320

1000 0.8916 0.8195 0.8352 0.7775

Value

60 1.5553 1.3347 4.1452 3.8806

360 3.0528 2.5920 4.1765 3.4226

600 3.1199 2.6862 3.7705 3.1938

1000 3.3112 2.8430 3.7456 3.1735

Momentum

60 2.4387 2.0441 17.4520 12.3867

360 3.1899 2.8505 5.1730 4.3170

600 3.1007 2.8569 4.1378 3.6745

1000 3.1815 2.9759 3.7893 3.4642
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Table IX. Expected value and standard errors for Fama-French model: US data,
10 size-sorted portfolios.

The table presents the expected value and the standard error of λ GMM estimates
under the Beta and the SDF methods. The returns and factors are generated under
the null hypothesis with the factors sampled from the empirical distribution. The
first estimator decorated with * are from the Beta method; the second and third
correspond to the first and second-stage un-centred SDF method; and the fourth
and fifth to the first and second-stage centred SDF method. The results are presented
for different lengths of time series observations, and they are based on 10,000 simulations.

T E[λ̂∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ̂∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Market

60 2.26 2.39 2.93 2.67 2.95 2.79 2.91 3.48 3.33 3.66

360 2.07 2.14 2.22 2.23 2.27 1.01 1.06 1.09 1.13 1.14

600 2.06 2.12 2.18 2.20 2.23 0.77 0.81 0.82 0.86 0.86

1000 2.06 2.13 2.16 2.19 2.21 0.59 0.62 0.62 0.66 0.65

Size

60 0.86 1.69 1.94 2.16 2.34 4.29 5.95 6.46 6.30 6.54

360 1.40 1.76 1.83 1.87 1.93 1.59 2.29 2.14 2.36 2.19

600 1.44 1.78 1.82 1.86 1.90 1.24 1.79 1.65 1.84 1.69

1000 1.48 1.81 1.84 1.88 1.91 0.93 1.34 1.23 1.38 1.26

Value

60 2.18 2.79 3.14 2.49 2.13 3.94 11.77 10.58 12.46 10.97

360 2.57 2.89 2.95 2.95 2.83 1.38 4.80 3.78 5.01 3.90

600 2.63 2.90 2.93 2.98 2.89 1.07 3.66 2.85 3.81 2.95

1000 2.64 2.86 2.87 2.94 2.88 0.81 2.81 2.19 2.92 2.26
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Table X. Expected value and standard errors for RUH model: US data, 10 size-
sorted portfolios.

The table presents the expected value and the standard error of λ GMM estimates
under the Beta and the SDF methods. The returns and factors are generated under
the null hypothesis with the factors sampled from the empirical distribution. The
first estimator decorated with * are from the Beta method; the second and third
correspond to the first and second-stage un-centred SDF method; and the fourth
and fifth to the first and second-stage centred SDF method. The results are presented
for different lengths of time series observations, and they are based on 10,000 simulations.

T E[λ̂∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ̂∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Market

60 1.94 2.33 2.74 2.67 2.85 2.71 3.10 3.50 3.52 3.69

360 1.95 2.13 2.20 2.26 2.28 0.98 1.07 1.09 1.15 1.15

600 1.94 2.10 2.14 2.21 2.22 0.76 0.82 0.83 0.88 0.87

1000 1.95 2.10 2.13 2.20 2.21 0.59 0.63 0.63 0.67 0.67

Momentum

60 3.73 4.32 5.23 0.55 0.98 3.86 11.12 10.26 11.77 10.70

360 2.77 2.98 3.25 1.99 2.14 1.62 5.80 5.08 6.12 5.16

600 2.59 2.80 2.92 2.26 2.31 1.23 4.56 3.92 4.84 4.05

1000 2.52 2.69 2.80 2.41 2.48 0.94 3.57 2.97 3.77 3.09

Value

60 1.51 2.80 3.03 1.90 1.19 4.00 12.10 10.01 13.14 10.56

360 2.26 2.83 2.89 2.60 2.41 1.40 4.56 3.75 4.85 3.95

600 2.35 2.81 2.85 2.72 2.60 1.06 3.51 2.90 3.74 3.07

1000 2.39 2.84 2.87 2.83 2.76 0.80 2.70 2.20 2.87 2.34
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Table XI. Expected value and standard errors for Carhart model: US data, 10
size-sorted portfolios.

The table presents the expected value and the standard error of λ GMM estimates
under the Beta and the SDF methods. The returns and factors are generated under
the null hypothesis with the factors sampled from the empirical distribution. The
first estimator decorated with * are from the Beta method; the second and third
correspond to the first and second-stage un-centred SDF method; and the fourth
and fifth to the first and second-stage centred SDF method. The results are presented
for different lengths of time series observations, and they are based on 10,000 simulations.

T E[λ̂∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ̂∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Market

60 1.99 2.36 2.69 2.75 2.88 2.89 3.16 3.53 3.66 3.87

360 1.90 2.10 2.16 2.24 2.27 0.99 1.08 1.10 1.16 1.16

600 1.89 2.08 2.11 2.20 2.21 0.76 0.82 0.82 0.87 0.87

1000 1.90 2.08 2.10 2.19 2.20 0.59 0.63 0.64 0.68 0.67

Size

60 -0.08 1.64 1.80 2.43 2.48 4.47 6.41 6.75 7.01 7.15

360 0.90 1.76 1.79 2.08 2.06 1.61 2.46 2.33 2.55 2.41

600 0.99 1.73 1.77 1.97 1.97 1.25 1.89 1.77 1.96 1.82

1000 1.04 1.77 1.78 1.95 1.94 0.96 1.45 1.34 1.50 1.38

Value

60 1.40 2.72 2.96 1.12 1.10 4.13 12.47 11.64 13.65 12.64

360 2.17 2.76 2.85 2.14 2.29 1.43 5.55 4.87 5.89 5.16

600 2.26 2.89 2.90 2.53 2.59 1.09 4.33 3.75 4.59 3.98

1000 2.29 2.81 2.84 2.63 2.69 0.81 3.30 2.86 3.49 3.03

Momentum

60 3.83 4.25 4.98 0.65 0.89 4.07 11.01 10.81 11.98 11.69

360 2.69 2.89 3.11 1.89 2.13 1.62 5.54 5.33 5.86 5.53

600 2.57 2.79 2.90 2.21 2.35 1.24 4.17 4.01 4.41 4.17

1000 2.50 2.68 2.74 2.37 2.46 0.95 3.25 3.11 3.42 3.25
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Table XII. Relative standard errors for four alternative single-factor models: US
data, 10 size-sorted portfolios.

The table presents the relative standard errors of λ GMM estimates under the Beta

and the SDF methods, computed as σr(λ̂) = σ(λ̂)÷E(λ̂). The returns and factors
are generated under the null hypothesis with the factors sampled from the empirical
distribution. Estimators decorated with * are from the Beta method; with A and B to
the un-centred and centred SDF method; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different lengths of time series observations,
and they are based on 10,000 simulations.

T σr(λ̂
U
1 )÷ σr(λ̂∗) σr(λ̂

U
2 )÷ σr(λ̂∗) σr(λ̂

C
1 )÷ σr(λ̂∗) σr(λ̂

C
2 )÷ σr(λ̂∗)

Single-factor model loaded with market factor

60 1.0833 1.0045 1.1219 1.0581

360 1.0654 1.0046 1.0935 1.0324

600 1.0656 1.0030 1.0921 1.0288

1000 1.0658 1.0039 1.0918 1.0295

Single-factor model loaded with size factor

60 1.8006 1.1771 1.7656 1.2153

360 1.7301 1.0869 1.7295 1.0965

600 1.6187 1.0576 1.6223 1.0660

1000 1.6199 1.0625 1.6249 1.0704

Single-factor model loaded with value factor

60 3.6666 1.9399 3.4126 2.9384

360 2.9342 1.9542 2.9205 2.0909

600 2.9140 1.9689 2.9173 2.0602

1000 2.8233 1.9448 2.8397 2.0065

Single-factor model loaded with momentum factor

60 3.0995 1.5323 3.0467 2.6295

360 1.8419 1.5265 1.8913 1.6745

600 1.8082 1.5198 1.8560 1.6095

1000 1.7837 1.5159 1.8224 1.5766
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Table XIII. Expected value and standard errors for four alternative single-factor
models: US data, 10 size-sorted portfolios.

The table presents the expected value and the standard error of λ GMM estimates under
the Beta and the SDF methods. The returns and factors are generated under the null
hypothesis with the factors sampled from the empirical distribution. The first estimator
decorated with * are from the Beta method; the second and third correspond to the
first and second-stage un-centred SDF method; and the fourth and fifth to the first and
second-stage centred SDF method. The results are presented for different lengths of time
series observations, and they are based on 10,000 simulations.

T E[λ̂∗] E[λ̂U1 ] E[λ̂U2 ] E[λ̂C1 ] E[λ̂C2 ] σ(λ̂∗) σ(λ̂U1 ) σ(λ̂U2 ) σ(λ̂C1 ) σ(λ̂C2 )

Single-factor model loaded with market factor

60 2.38 2.40 3.19 2.59 3.00 2.67 2.92 3.60 3.26 3.57

360 2.17 2.17 2.29 2.22 2.28 1.03 1.10 1.09 1.16 1.12

600 2.18 2.18 2.25 2.22 2.25 0.78 0.83 0.81 0.87 0.83

1000 2.14 2.14 2.18 2.18 2.20 0.62 0.66 0.63 0.68 0.65

Single-factor model loaded with size factor

60 1.66 1.69 2.02 1.82 1.84 4.31 7.90 6.19 8.34 5.81

360 1.80 1.77 1.87 1.79 1.85 1.64 2.78 1.85 2.82 1.84

600 1.83 1.86 1.90 1.88 1.88 1.26 2.06 1.37 2.09 1.38

1000 1.85 1.87 1.88 1.89 1.88 0.97 1.60 1.05 1.61 1.06

Single-factor model loaded with value factor

60 2.84 2.79 3.33 3.22 2.09 3.94 14.17 8.97 15.24 8.51

360 2.93 2.90 3.05 2.99 2.87 1.44 4.19 2.93 4.30 2.95

600 2.92 2.91 2.97 2.98 2.88 1.09 3.16 2.18 3.24 2.21

1000 2.91 2.96 2.98 3.01 2.94 0.84 2.41 1.67 2.46 1.70

Single-factor model loaded with momentum factor

60 4.30 4.39 5.79 5.51 3.25 3.96 12.52 8.15 15.44 7.85

360 3.01 3.06 3.29 3.22 3.00 1.75 3.26 2.91 3.53 2.91

600 2.89 2.91 3.05 3.02 2.89 1.35 2.45 2.16 2.61 2.17

1000 2.77 2.76 2.87 2.84 2.80 1.02 1.82 1.61 1.91 1.63
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Table XIV. Relative standard errors for four alternative asset pricing models: US
data, 10 size-sorted portfolios.

The table presents the relative standard errors of π GMM estimates under the Beta
and the SDF methods, computed as σr(π̂) = σ(π̂)÷E(π̂). The returns and factors
are generated under the null hypothesis with the factors sampled from the empirical
distribution. Estimators decorated with * are from the Beta method; with A and B to
the un-centred and centred SDF method; and with 1 and 2 to the first and second-stage
respectively. The results are presented for different lengths of time series observations,
and they are based on 10,000 simulations.

T σr(π̂
U
1 )÷ σr(π̂∗) σr(π̂

U
2 )÷ σr(π̂∗) σr(π̂

C
1 )÷ σr(π̂∗) σr(π̂

C
2 )÷ σr(π̂∗)

CAPM

60 0.8246 1.1259 0.8250 1.0426

360 0.8338 1.0015 0.8340 0.9947

600 0.8237 1.0004 0.8238 0.9958

1000 0.8284 0.9996 0.8286 0.9987

Fama-French

60 0.6249 1.3654 0.6342 1.2793

360 0.6738 0.9997 0.6741 0.9041

600 0.6891 0.9475 0.6898 0.8846

1000 0.7220 0.9473 0.7226 0.9124

RUH

60 0.6245 1.2626 0.6274 1.2145

360 0.6003 1.0224 0.6014 0.9947

600 0.5896 0.9544 0.5897 0.9368

1000 0.6158 0.9572 0.6160 0.9352

Carhart

60 0.5807 1.2146 0.5823 1.1697

360 0.6667 1.0224 0.6650 0.9442

600 0.7317 0.9992 0.7303 0.9458

1000 0.8545 1.1034 0.8540 1.0734
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Table XV. Expected value and standard errors for four alternative asset pricing
models: US data, 10 size-sorted portfolios.

The table presents the expected value and the standard error of π GMM estimates
under the Beta and the SDF methods. The returns and factors are generated under
the null hypothesis with the factors sampled from the empirical distribution. The
first estimator decorated with * are from the Beta method; the second and third
correspond to the first and second-stage un-centred SDF method; and the fourth
and fifth to the first and second-stage centred SDF method. The results are presented
for different lengths of time series observations, and they are based on 10,000 simulations.

T E[π̂∗] E[π̂U1 ] E[π̂U2 ] E[π̂C1 ] E[π̂C2 ] σ(π̂∗) σ(π̂U1 ) σ(π̂U2 ) σ(π̂C1 ) σ(π̂C2 )

CAPM

60 35.39 23.50 47.11 24.27 41.30 20.05 10.98 30.04 11.34 24.39

360 14.63 9.74 15.13 9.90 15.01 8.23 4.57 8.52 4.64 8.40

600 11.25 7.50 11.48 7.61 11.48 6.35 3.48 6.48 3.54 6.45

1000 8.80 5.86 8.90 5.94 8.96 5.00 2.76 5.06 2.80 5.08

Fama-French

60 24.10 11.50 30.48 12.41 27.23 12.37 3.69 21.36 4.04 17.88

360 10.12 4.61 7.26 4.77 6.92 4.54 1.39 3.25 1.44 2.80

600 8.37 3.57 5.25 3.69 5.11 3.61 1.06 2.14 1.10 1.95

1000 7.07 2.76 3.85 2.84 3.81 2.89 0.82 1.49 0.84 1.42

RUH

60 36.68 12.38 36.33 13.49 35.80 20.01 4.22 25.02 4.61 23.71

360 15.46 5.02 10.59 5.27 10.66 8.28 1.62 5.80 1.70 5.68

600 12.33 3.89 7.79 4.07 7.93 6.65 1.24 4.01 1.29 4.00

1000 10.15 3.03 5.87 3.16 6.02 5.31 0.98 2.94 1.02 2.95

Carhart

60 32.97 9.99 27.49 11.08 26.98 19.16 3.37 19.41 3.75 18.34

360 16.28 4.17 6.87 4.39 6.78 7.98 1.36 3.44 1.43 3.14

600 14.49 3.24 4.89 3.40 4.91 6.31 1.03 2.13 1.08 2.02

1000 13.28 2.52 3.59 2.63 3.65 4.99 0.81 1.49 0.84 1.47
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Figure 1. Asymptotic variance of the analytic and empirical estimated GMM with Beta and
SDF methods, from a Monte Carlo simulation with data calibrated to the empirical observed
market risk, size, value, and momentum factors from January 1927 to December 2018. Data
from Kenneth R. French library.
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