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I. Introduction

Derivatives are used with three purposes: hedging, speculation and arbitrage. Arbitrageurs provide

liquidity and equilibrium to the markets by searching for distortions in financial assets prices with the

objective of profiting from any difference between two equivalent assets with different prices; according

to Ross (2005) arbitrage occurs when there is an infinite return: a positive return with no investment.

Following Backus et al. (1998) we can infer that arbitrage in interest rate options markets is possible

due to fundamentals deviations. The Efficient Market Hypothesis (EMH) developed by Fama (1970)

is fundamental in many results of financial economics theory: in its strong form, no past, present or

inside information might affect future prices of assets. However, not all financial markets have the same

mechanisms, technology, and speed of information transmission; for example, emerging markets. Lo and

MacKinlay (1988), Lo and Wang (1995), and Lo (2004), proposed the Adaptive Market Hypothesis (AMH),

where some assumptions of the EMH are relaxed. Urrutia (1995) found that Latin America equity markets

are not efficient, but weak-form efficient. Al-Khazali and Mirzaei (2017) find that AMH is supported in

Islamic stock indices, but they gained efficiency over time. Ansotegui et al. (2013) identified statistical

arbitrage in a pairs-trading strategy in the Argentinean and Egyptian equity markets, by exploring the

depository receipts vs. the stock parity.1

Among the emerging economies derivatives markets, B3, the Brazil Stock Exchange and Over-the-

Counter Market, represents the second largest by number of transactions – 3.88 billion, measured by the

Futures International Association,2 and the third largest in the world, with an equivalent to 80% of the

total transactions of the Chicago Mercantile Exchange (CME) group.3 One of the most traded derivative is

the one-day (overnight) inter-bank deposit rate futures contract (first instrument of interest). The one-day

inter-bank deposit futures contract dynamic is similar to an interest rate swap contract, one counter-party

assuming the floating rate risk, and the other counter-party assuming the fixed rate risk.

In this paper we used an arbitrage-free model to test mispricing in the B3 Brazilian interest rate

derivative market: we test two derivatives which have as the underlying variable the one-day (overnight)

1In the case of developed markets, intraday parity relationships can also provide arbitrage opportunities; for instance,
Alsayed and McGroarty (2012) and Mitra et al. (2019) find arbitrage possibilities between the American depository receipts
(ADRs) and their corresponding stocks, for a group of UK companies.

2https://www.fia.org/resources/global-futures-and-options-trading-reaches-record-level-2019.
3Brazil is the third largest emerging economy by GDP, and the eighth largest in the world by a report of the United

Nations (2019).
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inter-bank deposit rate, henceforth DI interest rate. As expectations of the DI interest rate, needed to test

arbitrage, are better approximated by the one-day inter-bank deposit rate future contract, henceforth DI

future contract (first instrument of interest), we use it.

We use the one-day interbank deposit future options (second instrument of interest), henceforth, DI

futures options, and the one-day average interbank deposit rate index options, henceforth IDI index options

(third instrument of interest). We find that there exists temporary opportunities for arbitrage in the

Brazilian interest rate derivative markets by considering these two options, but these opportunities are

not sustainable in the long term. In our approach, we use a genetic algorithm to solve the non-convex

stochastic optimization problem that is derived from the non-arbitrage conditions between the two interest

rates options. To our knowledge, this is the first time an evolutionary algorithm has been used to solve an

interest rates option arbitrage mispricing problem.

The contributions of this paper to the literature are twofold: First, we provide an empirical analysis

of the arbitrage conditions of the two option instruments considered:4 the existence of arbitrage might

weaken the EMH hypothesis of Fama (1970), and support the AMH of Lo (2004), having implications

for the asset pricing theory: by EMH there should be no arbitrage opportunities, or only a small set of

opportunities imperceptible to the average informed trader in our arbitrage framework. This empirical

analysis of the behavior of the interest rates option prices and its arbitrage opportunities is an important

channel to identify how rational the arbitrageurs are – or, at least a channel to identify behavioral patterns

from market imperfections.5 The data used for the study is composed of 61 weeks of interest rate options

prices from November 03, 2017 to January 18, 2019, and 8.396 different option instruments (by including

all different maturities). To estimate the option prices we model the overnight interest rates (DI) with the

Longstaff et al. (2001a) model (henceforth the LSS model), developed to simulate the evolution of the

term structure of the London Interbank Offered Rate (LIBOR) in continuous time. The genetic algorithm

4By option pricing theory results (Merton et al., 1973), the relationship between these two options are driven primarily
by the correlation structure of the forward rates, that forces the no-arbitrage relationship. The first option pricing interest
rate models that were arbitrage-free (Ho and Lee, 1986; Ritchken and Boenawan, 1990) considered a mathematical implicit
no-arbitrage relationship by exploiting the implicit expectation rates in two discrete periods; nevertheless, they were consistent
only with the spot interest rate.In some applications with discrete time, one-day overnight interest rate can be considered a
spot rate. Nevertheless, in our paper we consider a more general continuous time model. Heath et al. (1992) extended Ho
and Lee’s (1986) model to the entire term structure, and it became a reference in interest rate option pricing; but Amin and
Morton (1994) and Backus et al. (1998) found that arbitrage-free models might misprice some interest rate options when the
fundamental and stylized factors – such as mean reversion – are not considered.

5In line with Xia (2001), for interest rate options traders, the learning curve of the arbitrage opportunities existing in the
market might be long enough to make the arbitrage opportunities perceptible under our framework.
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method is used to capture the average implied volatility of the options. The genetic algorithm is selected

given that the optimization function is non-convex. The algorithm’s objective is to find the Black (1976)

implied volatility that best prices a set of options.

Previously in the literature, evolutionary algorithms have been used to solve statistical arbitrage in

equity markets (Burgess, 1999, 2005). Other artificial intelligence techniques were used to solve statistical

arbitrage, pairs-trading, and portfolio/asset management problems: Hung et al. (1996) used neural networks

to solve statistical arbitrage factors by applying the arbitrage pricing theory (APT) in equities, and more

recently, Krauss et al. (2017) used deep neural networks to extract statistical arbitrage opportunities in the

S&P stock index. Krauss (2016) presents a survey of the different meta-heuristics approaches for solving

the statistical arbitrage problem. Figlewski (2016) provides a deep analysis of the conditions under which

arbitrage is possible; between the four arbitrage examples he analyzed, our study fits into the second

category, where “arbitrage is easy only in theory”, given that there might exists limitations in the liquidity

of the options. Nevertheless, our contribution to the theory is to develop a methodology to identify where

that possible arbitrage might occur.

Our empirical results provide evidence that there is no systematic arbitrage opportunities6 between the

IDI index options and the DI futures options. Nonetheless, for some periods of the sample, there were some

significant mispricings, that can lead to temporary profits with statistical arbitrage. Our empirical analysis

contributes to the literature on interest rates markets efficiency: Dunis and Lequeux (2000) analyzed the

spread between the bond prices and the implicit hedge price of the corresponding futures in the European

bond markets, finding that intra-day data contributes towards the reduction of the hedge ratio variance.

Choi et al. (2017) studied the variance risk premium of US treasury bonds, and find that the variance risk

premium is persistent and economically significant, which will represent a potential source of statistical

arbitrage. We contribute also to the general theory of statistical arbitrage, as our methodology can be

extended to other assets with interest rates. For example, complex models of equity statistical arbitrage

incorporate the dynamics of the interest rates. Statistical arbitrage in equity markets is reviewed and

6Recent models, such as Filipović and Trolle (2013) considered the arbitrage opportunities in previous arbitrage-free models,
and derived an option pricing model that disentangled the misprices into liquidity (non-default) and default components.
Filipović and Trolle (2013) model is relevant to our work as they considered a reduced-form model over the swaps on the
LIBOR and the overnight interest rate, that could be used to disentangle the source of the temporary statistical arbitrage, if
it is due to default risk or due to liquidity risk, as first explained by Liu et al. (2006). The Filipović et al. (2017) model is also
relevant to our work, as some extensions related to our results might be derived from the linear rational condition used in
their model.
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developed in Figlewski (1989); Bondarenko (2003); Alexander and Dimitriu (2005), and Avellaneda and

Lee (2010).

Our second contribution is methodological: by using a genetic algorithm optimization apporoach,

we provide an alternative test for statistical arbitrage in interest rate derivatives markets. The genetic

algorithm finds the implied volatility of the Black (1976) option pricing model that adjusts to the observed

empirical data, where the interest rate term structure for valuation follows the Longstaff et al. (2001a)

(LLS) string model. To gain computational tractability and simplify the equations, we changed the discrete

time interest rate capitalization equations into continuous time capitalization equations. A significant part

of the literature about interest rates derivatives, in accordance with Jarrow et al. (2007), considers two

subjects: (i) the first one is related to the unspanned stochastic volatility, the risk factors that pricing

interest rates derivatives are not the same as the term structure, and (ii) The second one, is about the

relative valuation of Caps e Swaptions.7 Given that the two options under study have the same underlying

asset, prices movements of both options are correlated to the movements of the term structure of the DI

interest rate, this involves a no-arbitrage relation between these two derivatives. However, according to

Longstaff et al. (2001a) and Jagannathan et al. (2003), there is an important mispricing between caps

and swaptions – verified through the use of various multifactor term structure models – that has been

called the “swaptions/caps puzzle”.8 Our paper contributes to the literature by providing a framework

that tests statistical arbitrage between the two options: IDI index options and DI future options; as such,

it contributes to the “swaptions/caps” puzzle, having the IDI index option similarities with a cap and the

DI future options similarities with a swaption.

The rest of this work is organized as follows. Section 1 presents the financial instruments utilized in the

empirical investigation and its payoffs equations. Section 2 develops the string market model adapted for

the DI interest rates. Section 3 reports the dataset used, Section 4 the empirical findings, and we conclude

in Section 5.

7The swaption is an option that confers on his owner the right to enter in a swap contract of interest rates, and is divided
into two types: the payer swaption and the receiver swaption. With the payer swaption, the buyer has the right to enter in
a swap contract to receive the floating rate and pay the fixed rate. The receiver swaption is the opposite. The Caps is a
derivative for which the buyer receives a payment at the end of each period in which the interest rate exceed the strike of the
option agreed at the moment of the purchase.

8Jarrow et al. (2007) developed a model with stochastic volatility and jump-diffusions over the LIBOR forward rates,
where the cap and swaption prices were arbitrage-free.
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II. Interbank Deposit Rates (DI) Derivatives Market

A. One-day Interbank Deposit Futures – First instrument

One-day interbank deposit futures, known as DI futures, is a derivative contract that has as the underlying

the expected one-day interbank loan interest rate, averaged between the trading date and the maturity

date of the contract. The product has a notional value of R$ 100,000.00 at maturity, each contract

corresponds to 100,000 points and each point amounts to R$ 1.00 at maturity. The futures price reflects

the expectations of the future behavior of the one-day interbank deposit rate9 verified during the period

between the initial trading date and the last trading date of the contract. The DI futures contract is

usually used to hedge and manage risk exposures on liabilities and debt positions in Brazilian reais by

companies. The DI rate is based on interbank loan transactions, and it is the equivalent Brazilian LIBOR

rate. At one end, DI futures are very liquid and represent a reference for one-day interbank loans. At

the other end, DI futures is one of the most volatile contracts, which will bring many opportunities for

speculation and arbitrage opportunities across the entire term structure of interest rates.

One of the main characteristics of the DI futures contract is the margin account, that is used to cover

the eventual losses of the operation. To buy a future contract of any commodity or index, there is no a

cost at the moment of the purchase, therefore, it is necessary to deposit a guaranteed amount that will be

used to control the margin and settlement risk. Define the initial date of the trade t, and the maturity of

the future contract T , the daily cash flow of the margin account can be expressed as,

MCF Tt = CP Tt − TP Tt , (1)

where MCF Tt is the margin account cash-flow for the future contract accounted at date t with maturity in

T , but paid on the next day (margin accounts are adjusted daily), CP is the contract unitary price (UP )

at the date of trading entry t in the future contract, adjusted by the spot rate r(t), and TP is the contract

unitary price (UP ) at the date of entry t in the future contract, but adjusted by the DI rate between date

t and the date T .

Consider a continuous trading economy with a continuum of default-free bonds, traded with different

9DI rates calculated by CETIP – Custody and Settlement – and expressed as a percentage rate per anuum compounded
daily based on a 252-day year.
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maturities. Assume bonds are traded at dates t ∈ [0, T ]. Define P (t, T ) as the bond’s price at time

t ∈ [0, T ], that has a face value of R$ 1,00 at maturity T . Henceforth, P (T, T ) = 1 and P (t, T ) > 0 for all

t ∈ [0, T ] (no default-free condition of the bonds).

The unit price (UP ) of the one-day interbank deposit futures contract is defined by,

UP (t, T ) =
100, 000

(1 + k/100)(T−t)/252
, (2)

where k is the agreed interest rate; the difference T − t, represents the reserve days,10 comprised between

the trading date t, inclusive, and the maturity date of the contract T , exclusive. DI futures contracts have

a value of R$ 100,000.00 at maturity, then, the UP represents the R$ 100,000.00 discounted by the agreed

interest rate.11 The bank calendar in Brazil uses annual periods of 252 business day and the capitalization

of the DI futures contract occurs only at the business day verified between the trade day and the maturity

date, inclusive.

Define two maturity dates, Ti and Tj , the forward interest rate f(t, Ti, Tj) is the implicit interest rate

between Ti and Tj , but discounted in t, and its price is calculated as

f(t, Ti, Tj)
annual =

(
UP (t, Ti)

UP (t, Tj)

) 252
Tj−Ti

− 1, ∀Ti, Tj ∈ [t, T ], Ti ≤ Tj , t ∈ [0, T ], (3)

where UP (t, Ti), UP (t, Tj) are the unit prices at time t of the contracts that have maturity at Ti and Tj

correspondingly.

To simplify the equations and facilitate the numerical implementations of the model, we use all interest

rates with continuous time capitalization. Therefore, we use the following expressions to get the annual

forward rate with continuous time capitalization

f(t, Ti, Tj)
continuous = log

(
1 + f(t, Ti, Tj)

annual
)
, ∀Ti, Tj ∈ [t, T ], Ti ≤ Tj , t ∈ [0, T ]. (4)

Because the calendar of DI future maturities is discrete and discontinuous – only 12 maturities in a

10Reserve days are business days for the purposes of financial market transactions, as established by the National Monetary
Council.

11We need to provide the full details of the DI future contract, as by being a one-day contract, 1/252 fraction of a year
represents a full period of trading.
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252-business days year, that represents 4.76% of the full trading calendar – we apply an interpolation

technique commonly used in the literature and by practitioners: we perform a piecewise polynomial

interpolation (cubic spline) to calculate a smooth curve of the interest rates to fill the gaps for the

remaining 95.24% of the days.

With the DI rates for the diverse maturities of the DI futures contract, f(t, Ti, Tj), one can obtain the

bond prices that pay R$ 1,00 at the maturity,

P (t, Tj) =
1

exp
(
f(t, t, Tj)

T−t
252

) , ∀Tj ∈ [t, T ], t ∈ [0, T ]. (5)

where r(t) is the spot rate,

r(t) = f(t, t, t), ∀t ∈ [0, T ]. (6)

The DI futures contract will have two legs, a fixed (PVfixed), and a floating (PVfloat), that should be equal,

PVfixed = PVfloat. By definition,

PVfixed =
∑
t

CδtPO
fixed
t Λt = C

∑
t

δtPO
fixed
t Λt,

PVfloat =
∑
t

rtδtPO
float
t Λt,

with POfixed
t the net present value at time t of the overnight interest rate agreed in the future contract,

POfloat
t the net present value of the expected effective DI interest rate (that will be an average of the

traded rate until the maturity of the contract); C, the contracts interest rate (fixed leg); Λt - the discount

factor for payment date t and rt - the spot rate (floating rate of future payment); and δt - the day count

fraction. Then,

C =

∑
t rtδtPO

float
t Λt∑

t δtPO
fixed
t Λt

, (7)

B. One-Day Interbank Deposit Futures Options - Second instrument

At the exercise day of the futures contract (maturity day), the buyer and the seller receive a position in

the one-day interbank deposit futures contract. The buyer receives a long position and the seller receives a

short position on the futures contract.
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Let T1 be the exercise date of the option and T2 the maturity date of the future contract; the option’s

payoff can be expressed in T1 by the following manner,

payoff [T1] = Q×max

(
cp

[
100, 000

exp
(
k
(
T2−T1

252

)) − FUTT1,T2
]
, 0

)
, (8)

where Q is the contract quantity; cp is the variable that defines if the option is of the type call or put ; and

FUTT1,T2 is the notional value of the future contract at time T1. The future contract will have a notional

value of R$ 100,000 at maturity (T2).

Under the classification of the B3 stocks and derivatives exchange, the maturity of the option depends

on the type of the future: (i) Type 1 (D11): when the underlying asset of the option is the future contract

with maturity in 3 months after the maturity of the option; (ii) Type 2 (D12): when the underlying asset

of the option is the future contract with maturity in 6 months after the maturity of the option; (iii) Type

3 (D13): when the underlying asset of the option is the future contract with maturity in 1 year after the

maturity of the option; (iv) Type 4 (D14): when the underlying asset of the option is the future contract

with maturity specified by the exchange securities. Given that the underlying asset has an expiration

date that is different from the expiration date of the derivative, there exists a basis risk between the two

expiration dates, that exposes the investor to the risks of interest rate term structure parallel shifts and

slope shifts. It is worth noting that these options are a European type, the exercise occurs only at the

maturity date, when the price of the DI future contract is greater than the exercise price for call options;

or below to the exercise price for put options.

After some algebraic manipulations, it is possible to transform the payoff in (8) to the payoff of a

swaption, in order to reduce the computational estimation burden,

payoff [T1] = Q× 100, 000

exp
(
k
(
T2−T1

252

)) ×max

(
cp

[
exp

(
r
(
T2−T1

252

))
− exp

(
k
(
T2−T1

252

))
exp

(
r
(
T2−T1

252

)) ]
, 0

)
, (9)

and r is the 1-year implicit yield (annual interest rate with continuous time capitalization) between T1 and

T2, and k is the exercise price of the option (published in rates by the B3).

We transform the continuous rates (exponential) into arithmetic,

1 +K linear

(
T2 − T1

252

)
= exp

(
k

(
T2 − T1

252

))
, (10)
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1 +Rlinear

(
T2 − T1

252

)
= exp

(
r

(
T2 − T1

252

))
. (11)

Substituting (10) and (11) in (9) yields,

payoff [T1] = Q× 100, 000

exp
(
k
(
T2−T1

252

)) × (T2 − T1

252

)
×max

(
cp

[
Rlinear −K linear

exp
(
r
(
T2−T1

252

)) ] , 0) . (12)

A final step consists in obtaining the payoff at T2,

payoff [T2] = Q× 100, 000

exp
(
k
(
T2−T1

252

)) × (T2 − T1

252

)
×max

(
cp
[
Rlinear −K linear

]
, 0
)
. (13)

Interest rate Rlinear represents the implicit linear DI rate between T1 and T2, K linear, is the implicit linear

strike rate of the option.

C. One-Day Average Interbank Deposit Rate Index (IDI) Options - Third Instrument

The third instrument (equivalent to the cap option) has as underlying the one-day average interbank

deposit rate index (IDI). The IDI index is an average of the one-Day interbank deposit rate (DI rate),

with daily updates.12 The index price is calculated as,

IDIT = IDIbasedate

T∏
ti=basedate

(1 + CDIti)
1

252 . (14)

This index in (14) resembles the caplet and floors instruments, used to protect the buyers against

fluctuations in interest rates. Unlike the future contract, there is no cash-flow exchange between the

counterparts.

The payoff of an IDI option with maturity at date T , is given by,

payoffT+1∗ = Q×max (cp [IDIT −K] , 0) , (15)

where Q is the quantity in number of contracts; K the option strike, and cp is the variable that defines if

the option is a call or a put. It is worth highlighting that the DI rate of any day is released at the end of

12The base date of the index is February, 01, 2009, and the base value at this date was R$ 100,000.00.
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the same day, therefore, the index price at T can be known only in T + 1.

The payoff also can be expressed with a continuous time interest rate,

payoffT+1∗ = Q×max

(
cp

[
IDIt exp

(
r

(
T − t
252

))
−K

]
, 0

)
. (16)

III. Methodology

A. Valuations Models

The classical model for interest rates options valuation used by the industry is the Black (1976) model,

where the price is quoted in terms of the implied volatility. In our framework, assuming linear interest

rates between T1 and T2, and that Rlinear has log-normal distribution, the DI futures options (the second

instrument of reference) Black (1976) model price is,

Ct = DCDI
t,T2

100, 000

exp
(
k
(
T2−T1

252

)) (T2 − T1)

252

(
Rlinear
T1,T2N(d1)−K linear

T1,T2N(d2)
)
, (17)

And,

Pt = DCDI
t,T2

100, 000

exp
(
k
(
T2−T1

252

)) (T2 − T1)

252

(
K linear
T1,T2N(−d2)−Rlinear

T1,T2N(−d1)
)
, (18)

with,

d1 =

ln

(
Rlinear

T1,T2

Klinear
T1,T2

)
+ 0.5σ2 (T1 − t)

σ
√

(T1 − t)
,

d2 = d1− σ

√(
T1 − t
252

)
,

where,

• Ct and Pt is the call and put option price, respectively.

• DCDI
t,T2

is the discount factor between the date t and T2, based on the curve of the DI future,

10



• k is the option strike, defined in rate;

• σ is the volatility;

• T2 − T1 are the contract term in the business day, considering the bank calendar,

• K linear
T1,T2

=

(
exp

((
log (1 + k) (T2−T1)

252

))
− 1
)

(T2−T1)
252

, and,

• Rlinear
T1,T2

are the linear interest rates between T1 and T2.

For estimating Rlinear
T1,T2

, we need to adjust the bond price present value to T1,

P (T1, T2) = P (t, T2) exp

(
f(t, t, T1)

(
T2 − T1

252

))
. (19)

Then, the implicit interest rate with continuous capitalization, between T1 and T2 is,

rcontinuous
T1,T2 = log

(
1

P (T1, T2)

)
252

(T2 − T1)
. (20)

and the corresponding linear interest rate,

Rlinear
T1,T2 =

(
exp

(
rcontinuous
T1,T2

(
T2 − T1

252

))
− 1

)
252

T2 − T1
. (21)

B. Implied Volatility – Genetic Algorithm

Using the Black model, is possible to get the implied volatility from the traded prices: by inverting

Equation (18) we can obtain the implied volatility σ from the option prices Ct quoted in the market. We

applied a genetic algorithm to find the inverse of (18). The genetic algorithms optimization process has

three main steps: selection, crossover, and mutation.

C. String Market Model

To model the dynamic of the term structure of DI interest rates, we adapted the Longstaff et al. (2001b)

(LSS) multifactor model. When single factor arbitrage-free specifications are applied in a multifactor

economically motivated framework, they can generate sub-optimal hedging strategies with arbitrage
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opportunities (Backus et al., 1998). Single factor models, such as the widely used Black (1976) model, are

unable to capture the implied volatility smile.

To capture the volatility smile, Goldstein (2000), Longstaff et al. (2001a) and Santa-Clara and Sornette

(2001) modeled the evolution the interest rate term structure as a stochastic string. In this approach,

which is a generalization of the Heath et al. (1992) model, it is possible to generate a dynamic shape of

the interest rate term structure. The innovation of the LSS model consists of each of the forward rates

f(t, Ti, Tj) behaving as a dependent random variable, that has its own particular dynamic, but with a

unique correlation structure between them.

In the LSS model, the evolution of the forward rate on the risk-neutral measure is,

dFi = αiFidt+ σiFidZi, (22)

where αi is an unknown drift, σi is a deterministic volatility function of the forward price, and dZi is a

Brownian motion process.

Although the model is specified in terms of the forward rates, we consider a more efficient implementation

using the vector of the bonds prices. The forward rate with continuous time capitalization are,

Fi = log

(
P (t, Ti + τ)

P (t, Ti)

)
τ

252
, (23)

where τ denotes a certain portion of the business day. Given that we choose a discretization of the data

based on the difference between the expiration date of the DI futures, τ express the difference in business

days between the maturity Ti + τ and Ti.

In the LSS model the evolution of the bonds prices is based in a stochastic differential equation with two

terms, the drift extracted from the spot interest rates, and the diffusion composed by the multiplication

of: (i) a Jacobian matrix of the sensitivities of the forward rates to each pair correlations, (ii) a matrix of

the implied covariance, (iii) a vector of forward rates. Applying Itô’s rule to the vector P of the bond

prices, we obtain the risk-neutral measure bond price,

dP = r(t)Pdt+ J−1ΣtFdZ, (24)
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where,

J =



− P (1)
P 2(2)

0 0 ... 0 0 0

1
P (3) − P (2)

P 2(3)
0 ... 0 0 0

0 1
P (4) − P (3)

P 2(4)
... 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · 1
P (29) − P (28)

P 2(29)
0

0 0 0 · · · 0 1
P (30) − P (29)

P 2(30)


,

Σt =



σ2
1 σ1,2 . . . σ1,N−1

σ2,1 σ2
2 . . . σ2,N−1

...
...

. . .
...

σN−1,1 σN−1,2 . . . σ2
N−1,N−1


,

and r(t) is the implicit yield or implicit spot interest rate, ΣtFdZ is a vector defined by the second terms

in the Equation (22), and J is the Jacobian matrix obtained through the derivation of the forward vector

(F1, F2, . . . , F29) with respect to the discount bond price (P1, P2...P30).13

The bond prices dynamic in Equation (24) provides a complete specification to the evolution of the

interest rate term structure. In Equation (24), r(t), P, J , and F can be estimated from the derivatives

market prices. The only matrix that is missing in the estimation is Σt, the instantaneous variance–covariance

matrix, which is estimated by calculating the implied volatility of the traded option prices.

D. Implied Covariance Matrix

The instantaneous variance–covariance matrix Σt used in model (24) is calculated in t, with the DI

futures options traded at the same date t. By definition, a covariance matrix is symmetric and positive

semi-definite.14 We preserve this condition in the estimation procedure. First, we calculate the historical

sample correlation Ht, with an increasing rolling window, initialized with 3 years (750 days). Matrix Ht

13We use a (30 − 1) × (30 − 1) matrix of sensitivities, as the maximum number of days between two consecutive maturities
is less than 30 days.

14A matrix is positive semi-definite if, and only if, its eigenvalues are all positive.
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can be decomposed as,

Ht = UtΛ0U
′
t , (25)

where Λ0 is a diagonal matrix of the eigenvalues of Ht (non-negative), and Ut corresponds to the N

eigenvectors. The matrix Ht will represent the estimated correlation in t. To approximate Σt from

Equation (24), we generate Σ̂t, assuming it shares the same eigenvectors of the historic correlations matrix

H. Then, Σ̂t can be estimated in the following manner,

Σ̂t = UtΨtU
′
t , (26)

where Ut is the historical correlations eigenvectors observed until t, extracted from Equation (25), and Ψt

is a diagonal matrix with non-negatives values, that represents the eigenvalues of the factor decomposed

historical covariance observed until t. The estimated factor covariance Σ̂t is our approximation for the

implicit model covariance Σt in Equation (24). The i-th diagonal element of Ψt can be interpreted as the

instantaneous variance of the i-th factor that drives the interest rates evolution. Considering that the

eingevectors of Ht are orthogonal factors, then, the same factors that generate the historic correlation

matrix Ht, are used to generate the factor implied covariance matrix, Σ̂t.

The diagonal matrix Ψ̂t estimated values will minimize the root mean squared error (RMSE) of the

percent difference between the market prices and model prices of these options (the objective function).

Because the RMSE of the market and model price differences are non-convex, we use a genetic algorithm

and a cubic interpolation to estimate Ψ̂t.

Using Σ̂t, we simulate 2.000 paths of the vector of bond prices by Equation (24). To reduce the variance

of the simulated values, we apply antithetic variates.15 With the matrix of the bond prices simulated, it is

possible to find the forward rates between the various maturities using Equation (23). DI future option’s

prices (second instrument of interest) are yielded by the payoff Equation (8).

IDI index option prices (third instrument) are estimated in a similar way, but substituting the payoff

(Equation (15)) that is discounted by the average stochastic discount factor (SDF) accumulated among

15To maintain the time homogeneity of the model, we excluded the first line and columns of Σt and J , this process is
repeated up to the maturity of the longer bond.
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the dates t and T2:
∏T2−1
i=0 P (i, i+ 1).

E. The Genetic Algorithm

Let Φ(Tj ,K
linear, Rlinear, σj , y), for j ∈ {1, . . . , TN}, be non-convex error pricing functions between: (i) the

option prices observed in the market (yi), and (ii) the Black (1976) option prices (Equations (18) and (24)),

where K linear
i ∈ {K linear

1 , . . . ,K linear
n } are the n available market strikes for call and put options at Tj , and

Tmax the total number of maturities available in the market; this difference is the standard calibration

method used to extract the implicit volatility σj . Then, we solve the following stochastic optimization

problem,

minimize
σj∈<

F̂ (σ) = E[Φ(Tj ,K
linear
i , Rlinear, σj , y)]

=
1

n

( n1∑
i=1

Ct,i(Tj ,K
linear
i , Rlinear, σj)− yi

)2

+

(
n∑

i=n1+1

Pt,i(Tj ,K
linear
i , Rlinear, σj)− yi

)2
 , (27)

where Ct,i(Tj ,K
linear, Rlinear, σj)andPt,i(Tj ,K

linear, Rlinear, σj) are the model price of the DI futures options

at time t, with maturity in Tj with strike K linear, volatility σj , and DI interest rate Rlinear. N is the

number of maturities considered (N = 30 in our case). The only unknown values in the minimization

problem (27) is the set of implied volatilities (σj) that correspond to the volatility in Equation (22); equal

to the diagonal of the matrix Σt. To find the implied volatility, we apply a genetic algorithm; the first steps

consists of generating the initial population set and evaluating this population on the objective function

(see Algorithm 1). The second step of the genetic algorithm is to generate a crossover of the population set

that has the best performance (see Algorithm 2), and the third step consists in computing the mutation of

the population after the crossover (see Algorithm 3).

After the mutation, the population is again evaluated on the objective function. This is an iterative

process: the new population is ranked and the best 50% individuals survive the cut, then, the survivors

are matched with each other in the crossover to generate descendants. The mutation process will add

the “non-convexity” capacity to the search heuristics. The new population is re-evaluated under these

three steps until the algorithm reaches a convergence to a global optimum. The mutation step provides an

heuristic that can pull the algorithm from a local minimum region, towards a better local minimum region,
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Algorithm 1 Evaluating the first population set

1: Step 1. σj,j = initial volatility
2: Step 2. Compute the initial population set: p = (σ1, ..., σn)
3: for k = 2:popsize do
4: for m=1:nbits do
5: σm,k = |δ| where δ is a random number δ ∼ N(σj,j , 2)
6: end for
7: end for
8: Where popsize=20 and nbits=1
9: Step 3. Evaluate the objective function:

10: for i=1:popsize do

11: cost(i, 1) =
1

n

((∑n1
i=1Ct,i(Tj ,K

linear
i , Rlinear, σj)− yi

)2
+
(∑n

i=n1+1 Pt,i(Tj ,K
linear
i , Rlinear, σj)− yi

)2)
12: end for

Algorithm 2 Crossover of the population set

1: Step 1. Sort the population set by the performance on the objective function;
2: Step 2. Crossover between the best 50% of the population set:
3: for i = 1:M do
4: M = (popsize− keep)/2 where keep is the number o survivor in the generation
5: dad = δ ∗ popsize ∗ selection where δ is a random number δ ∼ unif(0, 1)
6: mon = δ ∗ popsize ∗ selection where δ is a random number δ ∼ unif(0, 1)
7: selection=0.5 (fraction of the population kept)
8: indx = 2 ∗ (i− 1) + 1
9: p(σ1,keep+indx) = 0.7 ∗ p(σ1,dad) + 0.3 ∗ p(σ1,mon)

10: p(σ1,keep+indx+1) = 0.6 ∗ p(σ1,dad) + 0.4 ∗ p(σ1,mon)
11: end for

Algorithm 3 Mutation of the population set

1: Step 1. Define the quantity of the mutation;
2: nmut = popsize ∗mutrate
3: where mutrate is the mutation rate;
4: for i = 1:nmut do
5: col = δ ∗ popsize δ ∼ unif(0, 1) is a random number;
6: if col is different of 1 then
7: pop(1, col) = δ ∗ p(σ1,popsize∗δ) δ ∼ unif(0, 1) is a random number;
8: end if
9: end for
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in the search for the global optimum.

Figure 1 shows the convergence of the genetic algorithm. With less than 15 iterations the algorithm

gets to converge to a value of the implied volatility that minimize the objective function.

F. The LSS Model is Arbitrage-Free

In our economy framework, determined by the use of the LSS model, the initial wealth of the investor is

R$ 1.00 and that wealth is compounded by the short-term interest rate by,

B(t) = exp

(∫ t

0
r(y)dy

)
. (28)

Let Z(t, s) = P (t,s)
B(t) be the relative price of the bond.16 In agreement with Harrison and Kreps (1979),

if there exists an equivalent martingale measure P ∗, there is no arbitrage opportunities. Within this

equivalent risk-neutral probability measure P ∗, the relative bond prices (Z(t, s1), Z(t, s2)...Z(t, sn)) are

martingales.

Consider the system of Equations (29), b(t, T ) represents the excess return over the risk-free rate of the

bond with maturity T , γi represents the risk price of the factor i-th, and ai(t, Tj) represents the covariance

between the bond’s return (that has maturity in Tj) with the i-th factor. If there exists an equivalent

martingale measure P ∗, then, the systems of Equations (29) have a solution; moreover, if the covariance

matrix is non-singular, then, the probability measure P ∗ is unique.17


b(t, T1)

...

b(t, Tn)

 =


a1(t, T1) · · · an(t, T1)

...

a1(t, Tn) · · · an(t, Tn)

 ×


γ1(t;T1, ..., Tn)

...

γn(t;T1, ..., Tn)

 =


0

...

0

 . (29)

In a world with risk-neutral investors, the risk price that is represented by γi is null. Considering that P ∗

represents the risk-neutral measure, we need to subtract the risk premium from the evolution of the bond

prices. In the Equation (24), the drift only contains the spot interest rate r(t), considered here as the

risk-free rate rRN (t); then, the expected rate of return on all bonds is equal to the spot rate under the

16P (t, s) > B(t) because there is a risk premium associated with the tenure of the Bond
17For a complete demonstration of this result, see Heath et al. (1992).
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risk neutral measure, consequently, the LSS string market model is able to replicate the exact form of the

initial term structure and provide an arbitrage-free model.

IV. Data

The data sample of the DI futures contracts consists of weekly observations, from October 01, 2015 to

January 31, 2019,18 and contains 164 weeks, during each week there exists approximately 40 active trading

futures, when all the different strikes are considered.

The sample of the DI futures options corresponds to the period from November 03, 2017 to January

18, 2019 (61 weeks), with all the options of the sample being in-the-money (ITM) options.19 The sample

contains 2.196 options; from which every week there are 36 options being actively traded. The sample of

the IDI index options corresponds to the same period of the DI futures options, November 03, 2017 to

January 18, 2019 (61 weeks). Altogether, 6.100 different options are considered, with approximately 100

options with active trading for each day. All the IDI index options are in-the-money (ITM).

Figure 2 shows the surface of the interpolated DI interest rates. Short- and long-term interest rates

suffered a shortfall; however, the decline in the long-term rates was significant lower. Central banks usually

control the short-term section of the curve with the monetary policy; as a consequence the long-term rates

tend to be less susceptible to interventions of the monetary authority.

Figure 3 shows the histogram of the forward rate returns of a particular maturity. These histograms

offer an estimate of the underlying empirical probability distribution of the of DI futures contract returns.

Figure 4 shows the interest rate term structure at six different times, between October 01, 2015 and

January 31, 2019. In October 23, 2015, the short-term rate was above 13.5%, the curve was upward sloping

until the second year, but the long-term rates were reporting a downturn. The macroeconomic scenario

was of high inflation – the IPCA (Broad Consumer Prices Index) reached at the end of 2015, 10.67% over

the last 12 month. To control inflation, the Central Bank raised the short rate (SELIC) to 14.15% in July

29, 2015. In December 09, 2016, the curve was downward sloping (inverted), that is an uncommon slope

situation – sometimes preceding a decrease in the GDP or an economic crisis. The inverted slope denotes

18Price observations correspond to the Friday/or last business day of the week after the market has closed.
19An option is said to be at-the-money (ATM) if the spot price of the underlying asset r(t) is equal or close to the strike

price k, but with a positive payoff.
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a market expectation of the interest rates reduction in the medium and the long term. In 2016, the IPCA

was of 6.29% and the SELIC closed the year at 13.65%. In 2017 and 2018, the curve again presented the

traditional upward slopping form, consistent with a drop in inflation (the IPCA in 2017 was of 2.95% and,

in 2018 was of 3.75%) and a drop of the the short-term interest rate – in December 2017, the short-term

rate closed at 6.90%, and in 2018, the rate was close to 6.40%.

Figure 5 shows the implicit covariance estimated as in Section III.D. The calendar time and Forward-

time axis are equivalent to the term conditions for a swaption; for example, 2-year × 5-year point in Figure,

represents a swaption that gives the right to the owner to enter into an 5-year interest rate swap in two

years time. We can observe the 1-year × 1-year and 8-year × 8-year covariance points are higher; a value

of 6% means that a change in an hypothetical 8-year × 8-year swaption of 1% increases the covariance

surface by 6%.

V. Empirical Results

A. Likelihood Ratio Test

To estimate the number of factors necessary to price the DI futures options with the Longstaff et al.

(2001a) string market model, we used an incremental likelihood ratio test. Using the future times series of

61 weeks, with 36 options in each week, we compared nested models with 1 to 5 factors to verify if there

were statistical differences among them.20

The test is carried in the following manner: for a model with N factors, we compute the sum of squared

errors of the difference between the option market and option model weekly prices. Then, the method is

applied to a model with N + 1 factors. The error has a Chi-Square distribution with 61 degrees of freedom

(χ2
61), under the one-tail test, and a Chi-Square distribution with 30 degrees of freedom under the two-tail

test. hypothesis.

Table I shows the results of the likelihood ratio test between the nested models with 1 to 5 factors. The

critical value of χ2
61 is 89.59 at the 99% level of confidence, and the critical value of χ2

30 is 50.89 for the

same level of confidence. The Table I Panel A results show that the relationship is statistically significant

20The covariance matrix has N factors when the diagonal matrix Ψ has N eigenvalues across the diagonal.
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between the model with one versus two factors, two versus three factors, and three versus four factors.

These results imply that the option market prices on DI futures require only fours factors to be priced.

Heath et al. (1990) for the US market, and Almeida et al. (2008) for the Brazilian market, show that

three factors (associated with the level, slope and curvature of the interest rates curve) are necessary to

make forecasts about the interest rate term structure (IRTS). Therefore, by applying the Longstaff et al.

(2001a) model, we find that four risk factors are present on the IRTS. We employ these factors to price the

options.

We conduct another likelihood ratio test to get a deeper analysis by dividing the sample into two

periods. By virtue of the electoral year with a ex-ante uncertain political scenario, the division of the

sample is adequate to model the pre-electoral period (first half of the sample), and the post-electoral period

(second half of the sample). Even in these two sub-samples there exists evidence about the existence of

four factors for modeling the IRTS. Eigenvalues can be interpreted as the implied variance of the factors

(Longstaff et al., 2001a), and the eigenvectors as the implied covariances of the factors of the IRTS.

B. String Market Model Performance

Figure 6 shows four sub-plots with the time series for each one of the four eigenvalues of the four factors

found in the IRTS, between November 03, 2017 and January 18, 2019. The first eigenvalue, that corresponds

to the volatility of the first factor related to the parallel shift of the IRTS, had many statistical arbitrage

recognizable patterns over the period analyzed. By the end of 2017, the volatility was very high, and the

political scenario was of uncertainty and low confidence due to the lack or delay of structural economy

reforms, such as a social security reform.

Curiously, at the beginning of 2018, volatility declined sharply, but after that during the whole of 2018

it started to increase, in line with the electoral campaign for the elections held in October 2018. Even

after the election, the volatility continued to increase; analysts deduced that it was due to the uncertain

environment concerning the new government’s electoral promises.

The volatility of the second eigenvalue, associated with the slope of the interest rate curve, was about

0.2 at the end of 2017, but at the beginning of 2018, suddenly fell to approximately 0.03. In July 2018,

closer to the election, the volatility increased to a value similar to the slope’s shape at the end of 2017.
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Only after the conclusion of the first round of elections is that the volatility felt again.

Third eigenvalue volatility is associated with the curvature of the IRTS (or convexity/concavity).

This curvature shape was more pronounced at the end of 2017. In 2018, this value fell significantly and

maintained this low level until the end of the sample period. The fourth eigenvalue is related to third

order shape properties of the curvature (acceleration of the convexity) and its implied volatility is close to

zero. Although it was close to 0.007, during the electoral period this eigenvalue volatility almost doubled

to 0.012.

C. Convergence of the Model

Figure 7 shows the root mean squared error (RMSE) of the differences between the option prices obtained

from the market and the option prices calculated by the Longstaff et al. (2001a) string market model

calibrated to the market prices. We use a four-factor model. The median RMSE on the DI futures options

sample is 5.8% and the standard deviation is 1.4%. The median RMSE of the IDI index options is 3.7%

with 1.6% standard deviation. Considering the average bid–ask spread21 and transaction costs that add up

to 3% – 4%, we can infer there are no arbitrage opportunities.

D. “Near-The-Money (NTM)” Options and Arbitrage Opportunities

Near-the-money options usually have greater liquidity, therefore traders tend to focus some statistical

arbitrage strategies around them. We select a sub-sample with the NTM options and estimate the RSME

for both options.

Figure 8 shows the RMSE of the NTM options sub-sample. The RMSE on IDI index NTM options is

close to 11.35% with 45% standard deviation. The RMSE on DI futures NTM options is close to 5.52%

with 9.8% standard deviation. We observe that there are cases with possible statistical arbitrage, such as

December 2017, or December 2018.

21The bid–ask spread represents the difference in price that the seller and buyer cast into the trade systems, essentially it
is the difference between the highest price at which the buyer is willing to pay and the smallest price at which the seller is
willing to sell. The individual that is willing to sell gets the bid and the individual that is willing to buy gets the ask.
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VI. Conclusions

In this study we tested the statistical arbitrage opportunities in the derivatives market of a emerging

country – Brazilian B3 derivatives market – using a a four-factor Longstaff et al. (2001a) string market

model to describe the dynamics of the DI interest rate term structure. We use (i) the DI futures options

and (ii) the IDI index options, which have the same underlying asset – the DI interest rate – to test the

statistical arbitrage opportunities. We used a genetic algorithm to calibrate the implied volatility that

minimizes the difference between the market and the model prices.

The results show that arbitrage opportunities can exist between the two derivatives. However, there is

no arbitrage opportunity of a systematized manner – persistent over time. We found that the “near-the-

money” (NTM) options are more likely to present deviations between the model and market prices. Option

prices obtained through the Longstaff et al. (2001a) string market model converge to market prices. The

average pricing error is close to the typical bid–ask spread values (close to 3-4%), but the “near-the-money”

(NTM) sub-sample of options might present some statistical arbitrage opportunities by shorting the DI

futures options and taking long positions on the IDI index options.

Future research can analyze if the deviations that generate arbitrage opportunities are quickly adjusted

to fundamental values, or if this deviation is due to the existence of noise traders that promote deviations

for a the long-run.
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Table I Likelihood Ratio Test

The table reports results of the likelihood ratio test, that make pairwise comparisons between the models with

N and N+1 factors. The difference between the sum of the squared errors is asymptotically χ2
61 under the null

hypothesis of equality for the sample with 61 weeks and χ2
30 for the two half samples. The critical value of χ2

61 is

89.59 at the 99% level of confidence and for χ2
30 is 50.89 for the same level of confidence.

N Factors N + 1 Factors Statistical Test P-Value

Panel A. Full Sample

1 2 6,261,40 0.00
2 3 391.05 0.00
3 4 632.97 0.00
4 5 69.31 0.23

Panel B. First Half of the Sample

1 2 2,295.60 0.00
2 3 161.22 0.00
3 4 354.51 0.00
4 5 13.43 1.00

Panel C. Second Half of the Sample

1 2 3,565.70 0.00
2 3 225.59 0.00
3 4 268.18 0.00
4 5 53.52 0.01
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Figure 1. Genetic Algorithm Convergence. This figure shows the convergence of the genetic
algorithm. Minc reflect the acting of the best member of the population in each interaction, Meanc is the
arithmetic mean of the entire population. The y axis denotes the results of the objective function. To show
the convergence, we begin with a stratospheric value of 500 to the volatility and the genetic algorithm
finishes with 0.1.
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Figure 2. Evolution of the future interest rates – DI futures contract. This figures shows the
DI futures term structure evolution. The data set consists of observations extracted weekly from October
2015 to January 2019, using Friday closing rates quotes. The sample contain data of 164 different days and
for each day there are approximately 40 maturity dates. The rates was interpolated with the cubic spline.

28



0

10

20

30

40

50

-0.1 -0.05 0 0.05 0.1 0.15
0

5

10

15

20

25

30

-0.1 -0.05 0 0.05 0.1 0.15 0.2

0

5

10

15

20

25

-0.2 -0.1 0 0.1 0.2 0.3
0

5

10

15

20

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

0

5

10

15

20

-0.1 -0.05 0 0.05 0.1 0.15
0

5

10

15

20

25

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

F
re

q
u
en

cy

Histogram

Maturity 2.5 months
(50 bd)

F
re

q
u
en

cy

Histogram

Maturity 7.5 months
(157 bd)

F
re

q
u
en

cy

Maturity 14.5 months
(304 bd)

F
re

q
u
en

cy

Maturity 2 years
(493 bd)

F
re

q
u
en

cy

Percent Variation

Maturity 4.2 years
(1058 bd)

F
re

q
u
en

cy

Percent Variation

Maturity 7.5 years
(1873 bd)

Figure 3. Histogram of the of the DI futures contract returns. DI futures returns are calculated
using the annual rate with continuous capitalization. The graphs are divided based on the business day
until the maturity of the contract, considering a year with 252 business day (bd).
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Figure 4. DI futures term structure curve. The future interest rates were interpolated using a cubic
spline. The business day is on the horizontal axis and are obtained accordingly to the Brazilian bank
calendar.
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Figure 5. Implied covariance matrix. This figure presents the implied covariance matrix of the DI
futures market, which was estimated with the implied volatility of the DI future option for January 18,
2019.
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Figure 6. Implied Volatility Eigenvalues. This figure shows the time series of the eigenvalues related
to the 61 weeks, from November 03, 2017 to January 18, 2019, all options of the sample are at the money.
The eigenvalues are obtained from the implied volatility of the options on one-day interbank deposit
futures.
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Figure 7. Statistical arbitrage in all In-the-Money (ITM) options. The time series of the RMSE
of the DI futures options, and the IDI index options, from November 03, 2017 to January 18, 2019. All
options of the sample are at the money. There are 36 active DI futures options, and 100 IDI index options
for each date. Quotes are Friday closing prices. Model prices used a market data calibrated Longstaff et al.
(2001a) string market model with four factors.
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Figure 8. Statistical arbitrage in all Near-the-Money (NTM) options. The RMSE of the near-
the-money (NTM) sub-sample of (i) the one-day interbank DI futures options (ii) and the one-day interbank
deposit rate index (IDI) options. The sub-sample selects only near-the-money options from November
03, 2017 to January 18, 2019. Model prices used a market data calibrated Longstaff et al. (2001a) string
market model with four factors.
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Appendix A. Dynamic Evolution of the Bond Prices

Let P (t, T ) be the price at time t of a bond that has maturity at the date T , P (T, T ) = 1 and P (t, T ) > 0.

The instantaneous interest rates at time t for a period between t and T > 0, are denoted by f(t, T ). The

spot interest rates r(t), are the instantaneous interest rates available at time t, with time to maturity t,

namely, r(t) = f(t, t). Then,

f(t, T ) = − log

(
∂P (t, T )

∂T

)
,

P (t, T ) = exp

(
−
∫ T

0
f(t, T )df

)
,

r(t) = f(t, t).

The LSS dynamic of interest rates (we adopt for the DI rate, the same dynamic as the LIBOR rate), in

the risk-neutral measure are,

dF (t, Tj−1)

F (t, Tj−1))
= α̂j−1(t)dt+ σ̄j−1(t)dZ̃j−1(t), (A1)

With,

α̂j−1(t) =
1 + δF (t, Tj−1)

δF (t, Tj−1)

∫ Tj−t

y=Tj−1−t

∫ Tj−t

u=0
Rt(u, y)dydu, (A2)

σ̄j−1(t)dZ̃j−1(t) =

∫ Tj−t

y=Tj−1−t
dZ̃(t, y)σ̄(t, y)dy, (A3)

Rt(u, y) =
cov[df(t, u), df(t, y)]

Ft
= c(t, x, y)σ(t, x)σ(t, y), (A4)

where,

c(t, x, y) =
d[Z(., x), Z(., y)]t

dt
= corr[d[Z(t, x), Z(t, y)],

LSS volatility:

σ2
i−1(t) =

∫ Ti−t

x=Ti−1−t

∫ Ti−t

y=Ti−1−t
Rt(x, y)dxdy. (A5)

Historic Covariance Matrix:

Θij(t) =

∫ Ti−t

x=Ti−1−t

∫ Tj−t

y=Tj−1−t
R(x, y)dxdy. (A6)

Implied Covariance Matrix:

Σij(t, T0) =

∫ Ti−t

x=T0−t

∫ Tj−t

y=T0−t
R(x, y)dxdy. (A7)
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Consider the interval [T0, Tn] and the partition {Tj = T0 + δj}nj=1, where δ = Tn−T0
n , then:

P (Tj−1, Tj) = [1 + δF (Tj−1)]−1, (A8)

and,

1 + δF (Tj−1) =
P (t, Tj−1)

P (t, Tj)
. (A9)

The bond prices evolve in accordance with:

dP (t) = r(t)P (t) + J−1(t)σ̄(t)F (t)dZ̃(t), (A10)

where,

P (t) = (P (t, T1), ..., P (t, Tn−1))′, (A11)

σ̄(t)F (t)dZ̃(t) = (σ̄0F (t, T0)dZ̃0(t), ..., σ̄n−2F (t, Tn−2)dZ̃n−2(t)), (A12)

and J(t) is the Jacobian matrix, with Jii(t) = −1
δ
P (t,Ti−1)
P 2(t,Ti)

and Ji,i−1(t) = 1
δP (t,Ti)

, for i = 1, ..., n− 1 and

zero for the remainder terms. The introduction of the spot interest rates at expression (A10) is a manner

of imposing the no-arbitrage condition. Let us apply this assumption at (A1) to verify that the expression

(A10) is correct.

Consider that:

P (t, Tj−1) =
P (t, T0)∏j−2

k=0[1 + δF (t, Tk)]
, j = 2, ..., n, (A13)

So, applying the Itô’s rule to P (t, Tj−1),

dP (t, Tj−1) =

j−2∑
i=0

∂P (t, Tj−1)

∂F (t, Ti)
dF (t, Ti) +

1

2

j−2∑
i,l=0

∂2P (t, Tj−1)

∂F (t, Ti), ∂F (t, Tl)
d[F (., Ti), F (., Tl)]t)

+
∂P (t, Tj−1)

∂P (t, T0)
dP (t, T0) +

j−2∑
i=0

∂2P (t, Tj−1)

∂F (t, Ti), ∂P (t, T0)
d[F (., Ti), P (., T0)]t

+
1

2

∂2P (t, Tj−1)

∂2P (t, T0
d[P (., T0), P (., T0)]t.

Expanding the first term of dP (t, Tj−1)

j−2∑
i=0

∂P (t, Tj−1)

∂F (t, Ti)
[α̂i(t)F (t, Ti)dt+ σ̄i(t)F (t, Ti)dZ̃i(t)], (A14)

where,
∂P (t, Tj−1)

∂F (t, Ti)
=
−δP (t, Ti+1)

P (t, Ti)
P (t, Tj−1), (A15)
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Then,
j−2∑
i=0

−δP (t, Ti+1)

P (t, Ti)
P (t, Tj−1)[α̂i(t)F (t, Ti)dt+ σ̄i(t)F (t, Ti)dZ̃i(t)]. (A16)

Substituting the expression (A2) into the expression above,

j−2∑
i=0

−δP (t, Ti+1)

P (t, Ti)
P (t, Tj−1)F (t, Ti)

1 + δF (t, Ti)

δF (t, Ti)

∫ Ti+1−t

y=Ti−t

∫ Ti+1−t

u=0
Rt(u, y)dydu

= −P (t, Tj−1)

j−2∑
i=0

∫ Ti+1−t

y=Ti−t

∫ Ti+1−t

u=0
Rt(u, y)dydu dt.

(A17)

By the symmetry of Rt(x, y), the expression (A17) is equal to,

−P (t, Tj−1)

∫ Tj−1−t

y=T0−t

∫ T0−t

u=0
dyduRt(u, y)dt. (A18)

With relation to the second part of the equation (A14),

j−2∑
i=0

−δP (t, Ti+1)

P (t, Ti)
P (t, Tj−1)σ̄i(t)F (t, Ti)dZ̃i(t). (A19)

For the remaining terms, by introducing the equation (A3) in (A1),

dF (t, Tj−1)

F (t, Tj−1))
= α̂j−1(t)dt+

∫ Tj−t

Tj−1−t
dyσ̄(t, y)Z̃(t, y). (A20)

Henceforth, we use the following rule: dt2 = 0, dt.dZ = 0 and dZ2 = dt.

Expanding the second term of dP (t, Tj−1)

1

2

j−2∑
i,l=0

∂2P (t, Tj−1)

∂F (t, Ti, ∂F (t, Tl)
[α̂i(t)F (t, Ti)dt+ σ̄i(t)F (t, Ti)dZ̃i(t),

α̂l(t)F (t, Tl)dt+ σ̄l(t)F (t, Tl)dZ̃i(t)].

Applying the rules above:

1

2

j−2∑
i,l=0

∂2P (t, Tj−1)

∂F (t, Ti, ∂F (t, Tl)

∫ Ti−t

Ti−1−t
dyσ̄(t, y)Z̃(t, y)

∫ Tl−t

Tl−1−t
dyσ̄(t, y)Z̃(t, y).

Once again, by the symmetry of Rt(x, y), the term above reaches zero.

Expanding the third term of dP (t, Tj−1)
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Considering the follow dynamic of the bonds prices, according with Bueno-Guerrero et al. (2016),

dP (t, T0)

P (t, T0)
= r(t)dt−

∫ T0−t

y=0
dyσ̄(t, y)Z̃(t, y), (A21)

Then, with relation to the third term,

P (t, Tj−1)

(
r(t)dt−

∫ T0−t

y=0
dyσ̄(t, y)Z̃(t, y)

)
(A22)

Expanding the fourth term of dP (t, Tj−1)

j−2∑
i=0

δ

1 + δF (t, Ti)

1∏j−2
k=0[1 + δF (t, Tk)]

P (t, T0)F (t, Ti)

∫ Ti+1−t

Ti−t
dyσ̄(t, y)Z̃(t, y)

∫ T0−t

y=0
dyσ̄(t, y)Z̃(t, y) =

=

j−2∑
i=0

δF (t, Ti)

1 + δF (t, Ti)
P (t, Tj−1).

∫ Ti+1−t

Ti−t
dyσ̄(t, y)Z̃(t, y)

∫ T0−t

y=0
dyσ̄(t, y)Z̃(t, y)

= P (t, Tj−1)

∫ Tj−1−t

y=T0−t

∫ T0−t

u=0
dyduRt(u, y)dt. (A23)

Expanding the fifth term of dP (t, Tj−1)

Given that,

1

2

∂2P (t, Tj−1)

∂2P (t, T0)
= 0. (A24)

Then, this term is dropped.

Aggregation of the terms

Adding the equations (A18), (A19), (A22), and (A23), and after that, dividing everything by P (t, Tj−1),

dP (t, Tj−1)

P (t, Tj−1)
= r(t)dt−

j−2∑
i=0

−δP (t, Ti+1)

P (t, Ti)
σ̄i(t)F (t, Ti)dZ̃i(t)−

∫ T0−t

y=0
dyσ̄(t, y)Z̃(t, y). (A25)

In accordance with Longstaff et al. (2001a) (n. 12), for y ≤ (T0 − t) the volatility σ(t, y) = 0, in other

words, the process is not stochastic and do not affect the diffusion term in equation (A10). Therefore, the

38



last term of the expression of (A25) is dropped. Take into account that:

[J−1(t)]ij =


−δP (t,Ti+1)
P (t,Ti)

if j ≤ i

0 if j > i,

we get,

dP (t) = r(t)P (t) + J−1(t)σ̄(t)F (t)dZ̃(t).
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