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Abstract

This  paper  introduces  constraints  on  player  choices  in  a  broad  class  of  all-pay
auctions  by allowing for  upper  bounds  on  players’  strategy sets.  It  proves  the  exist-
ence  of  equilibrium  and  derives  simple  closed-form formulae  for  players’  expected
payoffs  in  any  equilibrium.  These  formulae  are  straightforward  to  calculate  in
applications and do not require the derivation of the equilibrium or equilibria.

This may be useful because:

(i) In some applications  players’ expected payoffs are the main item of  interest.  For
example,  one  may be  concerned  about  the  effect  of  a  policy  on  the  market  partici-
pants.  In these cases the results  can be used directly,  bypassing the need for the full
derivation of the equilibrium.

(ii) In all-pay auctions, equilibrium is typically in mixed strategies. So in applications
where  the  full  characterization  of  the  equilibrium is  of  interest,  finding  the  players’
expected payoffs is a crucial first step in the derivation of the equilibrium.
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B O D Y

1. Introduction

Often  agents  make  costly  irreversible  investments  in  hope  of  winning  a  prize.  In  all-pay  auctions,  the

players with the highest scores obtain a prize each but the winners’ and the losers’ costs of effort are at least

partially sunk.  All-pay auctions are used in many areas of research including rent-seeking,  political  contests,

lobbying, patent races, litigation, job tournaments, sports economics, advertising competition, and competition

over college seats in selective universities. In any of these competitive settings, contestants may be faced with

constraints.1  For instance, in the USA a cap on political contributions restricts lobbyists who may be attempt-

ing to buy policy favors through their political donations (Che and Gale, 1998 and Pastine and Pastine, 2010).

In  most  of  Europe  and  in  Canada  politicians  and  political  parties  are  faced  with  campaign  spending  limits

(Meirowitz,  2008 and Pastine and Pastine,  2012b).  In rent-seeking and R&D contests,  participants may have

liquidity  constraints  (Leininger,  1991).  In  litigation,  the  plaintiff  and  the  defendant  fighting over  a  favorable

court  decision  have  a  deadline  for  collecting  evidence  (a  time  constraint)  and  they  may  face  liquidity  con-

straints.  In the labor  market,  employees aiming to  impress for  promotion are restricted by a maximum of 24

hours of work in a day. In US professional sports leagues (NBA, NFL, NHL, MLS) teams are constrained with

annual salary caps.  There are score ceilings in the college admissions process as one cannot exceed 2400 on

the SAT. The literature on contests with constraints has proceeded via complete characterization of equilibria

in  well-chosen problems.  However,  the  need  to  derive  the equilibrium in  order  to  have  any results  naturally

limits analysis to problems which are analytically tractable.

In this paper we incorporate constraints on players’ actions in a broad class of complete information all-pay

auctions  by  imposing  upper  bounds  on  the  strategy  sets  of  some,  all  or  none  of  the  players.  We  show that

equilibrium exists and derive simple closed-form formulae for players’ equilibrium expected payoffs.

The expected payoff formulae are straightforward to calculate and do not require the full derivation of the

equilibrium or  equilibria.  The  results  are  useful  for  two  reasons:  (i)  In  some  applications  players’  expected

payoffs are the main item of interest. For example, one may be concerned about the effect of a policy on the

market participants. In these cases the results can be used directly, bypassing the need for the full derivation of

the  equilibrium.  (ii)  In  all-pay auctions  equilibrium is  typically  in mixed  strategies,  so  in applications  where

the full characterization of the equilibrium is of interest, finding the players’ expected payoffs is a crucial first

step in the derivation of the equilibrium. 

The second major result showing that equilibrium exists is non-trivial because there is a continuum of pure

strategies  and  payoffs  are  discontinuous  in  a  player’s  choice  and  so  classical  existence  proofs  do  not  apply.

Moreover,  we  cannot  use  the  innovative  existence  literature  based  on  Reny (1999)  as  in  this  setting  better-

reply  security  and  related  concepts  are  generally  incompatible  with  constraints  which  result  in  compact

strategy sets.  Somewhat  unusually,  we can guarantee  equilibrium existence  only for  cases were players have

non-compact strategy sets.

The class of contests we work from was first analyzed in Siegel (2009). The class includes standard linear

all-pay  auctions  as  well  as  contests  with  many  players  and  multiple  prizes.  The  framework  can  incorporate

contests  with  conditional  investments  (costs  that  are  paid  only in  victory or  only in  defeat),  head  starts,  and

non-ordered  payoff  functions.  We extend  this  framework  to  include  constraints  on some,  all,  or  none  of  the

players’ actions. Hence the results of Siegel (2009) are a special case.

Section 2 presents the model. The two main results are developed in Sections 3 and 4: Section 3 derives the

payoff  results  while  Section  4  presents  the  proof of  equilibrium existence.  Section 5  provides  an illustrative

application  taken  from  the  literature  showing  how  the  results  can  be  used  in  practice.  Finally,  Section  6

presents a straightforward but potentially useful participation result. 
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2. The Model

The  paper  closely  tracks  the  framework  of  Siegel  (2009)  –  henceforth  Siegel.  Wherever  possible  we

maintain the same notation.  Here we follow the bulk of  the  literature by using the  terminology “all-pay auc-

tion” for any contest with a perfectly discriminating contest success function. Siegel adopts a narrower defini-

tion.  In order to avoid confusion when utilizing the work in Siegel we will use the terms auction and contest

interchangeably, with the proviso that here “contests” will include only contests with perfectly discriminating

contest success functions. In cases where we alter an assumption or a result in Siegel and the change is a strict

generalization from the no-constraints case, we add “generalized” to the label of the assumption/result to make

the changes clear. In cases where the assumption/result is altered and the change is not a strict generalization,

we append  “modified” to  the label.  Subsequently these  qualifiers are omitted  when no  confusion is  likely to

result. 

n  players compete for m  homogeneous prizes where 0  m  n . Each player i simultaneously and indepen-

dently chooses a score si  from his set of feasible scores Si  which is an interval of 


. ai  0,   is the initial

score  of  contestant  i  if  he  puts  forth  no  effort  to  improve  his  score,  ai  inf Si ,  and  we  assume that  ai  Si.

Players’ initial scores give their degree of headstart advantage.

The  players  with  the  highest  m  scores  each  win  one  prize.  In  the  case  of  ties,  any  tie-breaking  rule  to

allocate  the  prizes  among the  tied  players  is  permitted.  Given a  profile  of  scores  s  s1, , sn ,   player  i ’s

expected payoff is:

Qisvisi 1 Qiscisi

where  Qis  is  player  i ’s  probability  of  winning  at  profile  s.  His  payoff  if  he  wins  is  given  by  visi .  His

payoff if he loses is cisi . vi  and ci  are defined  si  Si .

There  are certainly important  issues that  this  specification cannot address.  For example,  it  does not  allow

for identity-dependent externalities as analyzed in Klose and Kovenock (2015) nor does it permit non-identical

prizes.  However,  it  does  allow for  a  broad  class  of  all-pay  auctions:  It  can  incorporate  contests  with  many

players with potentially differing valuations, identical prizes, conditional investments, non-ordered asymmetric

cost functions with players who have cost or payoff advantages in different ranges of scores, and contests with

variable rewards where the value of the prize to the player depends on his own score. Note that visi  is the net

value of winning the prize. There is no requirement that ci  be parallel to vi . This permits analysis of contests

where  players  make  conditional  investments.  For  example,  an  Olympic  committee  may  promise  to  build  a

stadium  if  the  games  are  held  in  their  city.  By  specifying  a  range  of  si  in  which  ci  is  constant  while  vi  is

decreasing, the framework permits such promises of actions to be taken only in victory. Disconnecting the cost

of losing and  the  value  of  winning also  permits  analysis of  situations where  the  difficulty in carrying out an

action  depends  on  the  outcome  of  the  competition.  For  example,  a  politician  who  borrows  money  for  his

campaign may find it easier to raise the funds to repay the loan if he is elected. 

Denote ki  sup Si  so that for  cases where ki   ,  ki  is  a ceiling on the player’s choice of score. Such an

upper bound on a player’s strategy set will be termed a constraint. Section 5 presents an example showing how

constraints  on  players’  choices  result  in  upper  bounds  on  players’  strategy  sets.  We  permit  either  kiSi  or

ki  Si .  The  introduction  of  a  constraint  is  without  loss  of  generality  as  the  affinely  extended  real  numbers

permit the notation ki    to represent the absence of a constraint. Constraints are permitted for any, none or

all players and at any scores. Hence the paper generalizes Siegel in which players do not have constraints, i.e.

ki    for all players.

To proceed we need to place three assumptions on vi  and ci :
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Assumptions:

A1: vi and ci are continuous and nonincreasing

Generalized A2: ciai  0, viai  0 and if ki    then limsivisi  0

A3: cisi  0 if visi  0

 The  framework  permits  analysis  of  auctions  where  effort  increases  the  value  of  the  prize.  However,  the

assumption on vi  in A1 implies that conditional on winning an increase in the score does not increase the value

of the prize by more than the cost of additional effort. A3 and the assumption on ci  in A1 capture the feature

of all-pay auctions where the winners’ and the losers’ costs of effort are at least partially sunk. However, they

do not  require  that  the  cost  of  incremental  effort  is  sunk.  The  A2 implies  that  a  prize  has  a  strictly  positive

value for each player and the payoff conditional on winning is negative with a high enough score. 

It is useful to define some terminology which is key to the analysis.

Definitions:

(i) A player i  is said to be restricted at x  if x  ki  and one of two conditions are satisfied:  (a) x  Si  and

vi x  0  or  (b)  x  Si and  limzx viz  0.  So,  a  player  is  restricted  at  x  if  he  has  a  positive  value  from

winning at score at x or approaching x  from below, but he is unable to exceed that score due to his constraint.

(ii) Player i ’s generalized reach,  ri ,  is the supremum of the feasible scores at which the player’s valuation

for  winning  is  non-negative,  ri supsi  Si : visi  0 .  Re-index  players  in  any  decreasing  order  of  their

reach, so that r1    rm   rn.

(iii) Player m  1  is the marginal player. The indexing of the players ensures that there is only one marginal

player. If there are multiple players with the same reach the identity of the marginal player will be arbitrary but

there will only be a single marginal player.

(iv) The threshold, T , of the contest is the reach of the marginal player: T  rm1 . 

(v) Player i ’s generalized power, wi , is his valuation of winning at his highest feasible score that is less than

or equal to the threshold if he is able to choose such a score. If he can only choose scores above the threshold,

his  power  is  his  valuation  from  winning  at  his  lowest  feasible  score.  Formally,  if  ai  T  let

z  supsi  Si : si  T  and if ai  T  let z  ai . Player i’s power is: 

wi 



viz if z  Si

limx z vix if z  Si

The definitions of reach and power are generalizations of the concepts from Siegel to permit the possibility

that players may be constrained at their reach. 

When players  have  no  constraints,  players with ri  T  have  power wi  0.  However with constraints,  the

power of players with ri  T  may be positive. If a player i  m  is constrained at his reach, then it is possible

that  wi  0.  For  instance,  consider  the  contest  in  Figure  1  with  one  prize  and  two  players.  Player  1  has  no

constraint.  Player  2’s  valuation  of  the  prize  is  high but  he is  constrained  and cannot  achieve  a  score greater

than k2 . The reach of Player 1 is r1 . The reach of Player 2 is k2 . Since r1  r2 , Player 2 is the marginal player.

The  threshold  of  the contest  is  T  k2 .  The  marginal  player  has  a  higher  power than player  1,  w2  w1  0,

which cannot happen in the model without constraints. 
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 In order to focus on the pertinent issues, in the figures for the examples we graph only vi  and not ci . Notice

that  given  viai  ciai  0,  the  definitions  of  reach,  threshold  and  power  are  based  only  on  the  players’

valuations from winning and not on the shape of players’ costs of losing, cisi . Under the assumptions above

and some additional assumptions below, it will be shown that to find player i’s expected payoff in any equilib-

rium, all  one needs to  calculate is  the players’ reaches,  the threshold and wi .  While  a player’s cost  of losing

and shape of vi  away from the threshold typically alter the equilibrium, they do not affect the expected payoffs.

We need to place additional restrictions on the game, termed generic  conditions. These conditions restrict

attention to  games that  are generic in the sense that  any auction that  fails  to meet the conditions can be per-

turbed slightly so that it does. In many sufficiently parameterized models the generic conditions will hold with

probability one  if  the  relevant parameters  are  drawn from continuous distributions before they become com-

mon knowledge. For example, the applications presented in Section 5 have this feature.

The generic conditions are needed to guarantee that there is at least one equilibrium where tied scores occur

in with probability zero - although such ties are permissible. When the generic conditions do not hold, general

statements about player expected payoffs are not likely to be forthcoming. Klose and Kovenock (2015) show

that such games can have multiple equilibria which are not payoff equivalent.

The generic conditions are divided into two groups, weak generic conditions and strict generic conditions.

A contest that satisfies the weak generic conditions, is a weakly generic contest. The weak generic conditions

are  requirements  on  the  game  in  the  neighborhood  of  the  threshold.  They  are  sufficient  to  establish  the

expected payoff result. If an auction satisfies both the weak and strict generic conditions, it is a strictly generic

contest.  The strict generic conditions are requirements on the game in the neighborhood of the constraints of

players whose constraints may be binding in equilibrium. Any auction without constraints that is generic in the

sense  of  Siegel  satisfies  both sets  of generic  conditions  and  hence  any generic  contest  without  constraints  is

also a strictly generic contest.

Section 3’s results  deriving simple closed-form formulae for  players’ expected payoffs in any equilibrium

are valid for contests that satisfy the following weak generic conditions:

(i) Generalized  Power Condition: The marginal player is the only player with reach at the threshold and

players 1, , m  have non-zero power. 
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(ii) Generalized  Cost Condition: The marginal player has strictly decreasing valuation from winning just

below the threshold. That is, for any x  am1, T ,  vm1x  limzT vm1z .

The  Generalized  Power  Condition  parallels  Siegel’s  Power  Condition  which  requires  that  the  marginal

player is  the only player with power zero.  However with constraints the marginal player may be restricted at

the  threshold.  As  in  Figure  1,  there  may  be  no  player  with  zero  power.  It  is  also  possible  that  a  player

i  m  1 has power zero if viki  0. The conditions are equivalent in cases where ki  ri   i  m .

Note that the Generalized Power Condition rules out the cases where the value of winning vi  of any player

i1, , m  is  zero  at  the  threshold.  The  Generalized  Cost  Condition  rules  out  cases  where  the  value  of

winning of the marginal player, vm1,  is constant in si  in the neighborhood just below the threshold.  Contests

that do not meet the weak generic conditions can be perturbed slightly to meet them. For instance, if there are

two  players  with  the  same  reach  at  the  threshold,  giving  one  of  the  players  an  arbitrarily  small  headstart

advantage  or  the slightest  valuation advantage  can create a contest  that  meets the Generalized Power Condi-

tion.  Likewise,  perturbing the  marginal player’s head start  or  valuation for  winning around the threshold can

generate a contest that meets the Generalized Cost Condition.

At  first  glance,  the  Generalized Power Condition may seem problematic  in applications where constraints

are legal  prohibitions.  It  seems intuitive that  there may be many players with reach at the threshold  since all

players may be subject to the same legal constraint. However, legal restrictions are typically on actions rather

than  on  scores.  Arbitrarily  small  differences  in  players’  head  starts  or  technology of  converting actions  into

scores will  lead to different  score constraints  even with identical constraints on actions.  For instance,  in Che

and Gale (1998) political donors face the same contribution cap. The contest does not satisfy the Generalized

Power  Condition  because  the  donors  have  the  identical  effectiveness  in  converting  donations  into  political

influence  (scores).  However,  the  political  donation  contest  satisfies  the  Generalized  Power  Condition  if  the

donors have even the slightest difference in technology of converting donations into influence, see Pastine and

Pastine (2010).  Likewise,  the Generalized Power Condition is  satisfied if  the politician has any initial policy

preference - however small - providing one of the contributors a head start.

 It  will prove useful to define several sub-groups of players.  Let Nw  1, , m  denote the set of players

with the m highest reaches. In any weakly generic contest each player in Nw  has reach greater than the thresh-

old.  NL  m  1, , n  denotes  the  set  of  remaining  players.  All  players  in  NL  have  reaches  less  than  or

equal  to  the threshold.  Define N


L  as the subset of players in NL  who have  reaches equal to  their constraint,

N


L  i  NL : ri  ki . 

Since for the players in NL  scores si  T  are either infeasible or strictly dominated by ai , the players in NL

are either unable or unwilling to exceed the threshold. So any of the m players in Nw  can guarantee victory by

choosing si  maxai, T    for sufficiently small, positive  . They do not have to go all the way up to their

reach in order to ensure victory. So in equilibrium their constraints will not be binding. Players in NL \N


L  have

reaches less than their constraint.  In equilibrium their  constraints will not be binding. Therefore N


L  contains

all the players whose constraints may possibly be binding in equilibrium.

In  order  to  guarantee  that  an  equilibrium  exists  we  need  to  impose  additional  generic  conditions  in  the

neighborhood of the constraints of the players in N


L .  A contest is strictly generic  if in addition to the above

weak generic conditions, it satisfies the following strict generic conditions:

(i)  Strategy  Set  Condition:   No  player  in  N


L  has  si  ki  in  his  set  of  possible  choices.  That  is

ki  Si  i N


L .

(ii)  Strict  Cost  Condition:  All  players  in  N


L  have  their  valuation  from  winning  strictly  decreasing  just

below their reach and if player m  1  is in N


L  then he has a  strictly positive payoff from winning for scores
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approaching his constraint. That is   i  N


L , vix  limzri
 viz  for any x  ai, ri  and if m  1 N


L  then

limzkm1
 vm1z  0.

(iii) All-Pay Condition: All players in N


L  have a positive cost of losing when approaching their constraint.

That is   i  N


L , limzki
 ciz  0. 

(iv)  Constraint  Condition:   No  two  players  in  N


L  have  identical  constraints.  That  is    i, j  N


L  where

i  j , ki  k j .

Since  these  strict generic  conditions are on the specification of  the  game in the neighborhood of the con-

straints  of  players  in  N


L ,  any  weakly  generic  contest  without  constraints  is  also  strictly  generic.  These  are

generic conditions in the sense that any contest that fails to meet them can be perturbed slightly to meet them.

The  Strategy Set  Condition permits  constraints  of  the  form “spending must  be  less  than x”  but  precludes

constraints  of  the  form “spending  cannot  be  greater  than  x.”  Any  contest  that  fails  to  meet  the  Strategy Set

Condition can be perturbed to meet it by removing a single point (ki ) from the set of possible choices for each

of the offending  players.  Also  notice  that  this condition implies ki  ai  for  players in N


L .  It  is  interesting to

note that many games in the literature involve spending money to increase players’ scores. In these cases the

underlying reality is  a  discrete-choice  game as  monetary units  are not  infinitely divisible.  Continuous-choice

games  are  analyzed  solely  due  to  their  tractability.  However  in  these  cases,  the  choice  of  open  or  closed

intervals for constraints is entirely arbitrary. In reality “spending cannot be greater than $10,000” is equivalent

to  “spending  must  be  strictly  less  than $10,000.01.”  When moving to  a  continuous-choice  approximation of

the discrete-choice reality, there is no reason to prefer one over the other except for tractability.

The  first part of the Strict Cost Condition is an extension of the Generalized Cost Condition to players in

N


L ,  rather  than  applying  it  just  to  the  marginal  player.  The  second  part  says  that  if  the  marginal  player’s

constraint  may  be  binding  he  has  a  positive  payoff  from  winning  approaching  his  constraint.  As  such,  any

game  that  fails  to  meet  the  Strict  Cost  Condition  can  be  perturbed  to  meet  it  by  increasing  any  offender’s

payoff from winning at or just below the constraint by an arbitrarily small amount. 

The All-Pay Condition requires that for players in N


L  at least some of the cost of effort is sunk locally in

the neighborhood of their constraint. The contest has an all-pay nature for those players. A contest that fails to

meet the All-Pay Condition can be perturbed to meet it by adding an arbitrarily small amount to each offend-

ing player’s cost of losing just below his constraint.

The  Constraint  Condition  guarantees  that  no  two  players  have  binding  constraints  at  the  same  score.  A

contest that fails to meet the Constraint Condition can be perturbed to meet it by arbitrarily small changes to

the  offending players’  constraints.  Again at  first  glance this may seem problematic  in applications where the

constraints  come from legal  prohibitions,  since  all  players  may be  subject  to  the  same  laws.  However,  arbi-

trarily  small  differences  in  players’  head  starts  or  technology  of  converting  actions  into  scores  will  lead  to

different score constraints even with identical constraints on actions. The application in Section 5 provides an

example from the literature which illustrates this.

3. Payoff Characterization

In this  section we develop the characterization for  the expected payoffs in any equilibrium of any weakly

generic contest. Three lemmas are used in the payoff characterization. The first two of these intermediate steps

are  modifications  of  the  corresponding  items  in  Siegel  rather  than  strict  generalizations.  Here  we  permit

constraints  but  confine  the  domain  to  weakly  generic  contests  whereas  the  proofs  in  Siegel  apply  to  any

unconstrained contest whether generic or not.
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For each player define Gi  as a cumulative distribution function that assigns probability one to scores in Si

and  let  Gisi  be  that  c.d.f.  evaluated  at  score  si .  For  a  strategy  profile  G  G1, , Gn,  let

Gi  G1, , Gi1, Gi1, , Gn,  the  strategy profile  of  all  players  except  player  i.  Pisi; Gi  is  player  i’s

probability  of  winning  when  he  chooses  si  Si  and  all  other  players  play  according  to  G .  Similarly  define

expected utility uisi; Gi Pisi; Givisi  1  Pisi; Gicisi .2  The score si  is in player i’s best response

set if si  arg maxxSi uix; Gi . si  is in the support of player i’s strategy if it is chosen with non-zero probabil-

ity in Gi .  G  forms an equilibrium if in G  for each player i,  all  scores in the support of i’s strategy are in his

best response set.

Modified  Least  Lemma:  In  any  equilibrium  of  a  weakly  generic  contest,  the  expected   payoff  of  each

player in Nw  is at least his power and the expected  payoff  of each player in NL  is at least zero .

Proof:   In  equilibrium no  player  would  choose  a  score  higher  than his  reach since  such a  score  is  either

infeasible  or  is  strictly  dominated  by ai .  By the  definition  of  a  player’s  power  and  the  threshold  at  most  m

players can have  reach strictly greater  than T .  Since players  i  Nw  who have  ai  T  are  not  restricted at  T

and  are  able  to  exceed  the  threshold  by    (Assumption  A1),  they  can  guarantee  an  expected  payoff  that  is

equal to their power. Players i  Nw  who have ai  T  can win with certainty at si  ai  by the Power Condition

and hence can guarantee a payoff equal to their power. Each player i  NL  can guarantee a payoff of at least

zero by simply choosing ai .  Q.E.D.

The Modified Least Lemma establishes a lower bound for player payoffs in any equilibrium. We now need

to establish an analogue of the Zero Lemma (Siegel pg 80) showing that  for the players in NL  the  expected

payoff  must  be  equal  to  this  lower  bound.  In  Siegel  this  is  done  using  an  intermediate  step  termed  the  Tie

Lemma (Siegel pg 80) which shows that in any equilibrium if two or more players play strategies with atoms at

the  same  score  (choose  that  score  with  strictly  positive  probability)  then  all  such  players  either  win  or  lose

with  certainty  at  that  score.  In  the  next  section  we  will  develop  an  analogue  of  the  Tie  Lemma  for  strictly

generic  contests  with  constraints.  As  in  the  original  Tie  Lemma,  the  proof  relies  on  a  player’s  ability  to

increase his score slightly to avoid ties when his probability of winning is  positive but  less than one in a tie.

Unfortunately,  this  is  not  always  possible  for  ties  at  ki  when  ki  Si .  However,  we  will  need  to  show  the

expected  payoff  result  for  cases  where  ki  Si  in  order  to  prove  the  existence  of  equilibrium  in  the  next

section. Therefore here we tweak the proof of the Zero Lemma to bypass the use of the Tie Lemma:

Modified  Zero  Lemma:  In  any  equilibrium G of  a  weakly  generic  contest,  all  players  in  NL  must  have

scores in the support of their strategies in G with which they win with probability zero or arbitrarily close to

zero. These players have expected payoff of zero.

Proof:  Let J  denote a set of players including the m  players in Nw  plus any one other player j  NL . Let

S


 be the union of the best-response sets  of the players in J  and let sinf  be the infimum of S


.  Consider three

cases: (i) two or more players in J  have an atom at sinf ,  (ii) exactly one player in J  has an atom at sinf ,  and

(iii) no players in J  have an atom at sinf .  Examination of  these cases helps establish the expected payoffs of

players in NL.

Case (i). Initially denote N '  J  as the set of all players in J  with an atom at sinf  where  N '   1. Every

player in J  N '  chooses scores greater than sinf  with probability 1. Therefore even if every player that is not in

J  chooses scores strictly below sinf  with probability 1,  that  leaves one too few prizes to be divided between

 N '   players. So not all players in N '  can win at sinf with certainty. 
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If there are any players in N '  with probability of winning at sinf  equal to 1, remove them from N '  so that

Pisinf ; Gi  1    i  N ' .  If   N ' =1 then that  player  i  loses with certainty with score sinf  and  i’s expected

payoff cannot be positive. From the Modified Least Lemma and the Generalized Power Condition this player

cannot be in Nw ,  so he must be the one player in J  Nw ,  and he must have expected payoff equal to zero.  If

 N '   1, then let H be the set N '  Nw . Since there is only one player in J  Nw ,  H     N '  1,  N '  .

For  no  player  i  H  can  the  probability  of  winning  at  sinf  be  equal  to  zero.  If  it  were,  i  would  have

uisinf ; Gi  0  and he must have a positive payoff by the Modified Least Lemma and the Generalized Power

Condition  because  HNw .  If  player  i  loses  ties  with  other  players  in  N '  with  positive  probability,

Pisinf ; Gi (0,1).  But  this  is  not  possible  for  any  i  H ,  since  i  can  do  better   by  increasing  his  score

slightly above sinf  to avoid ties by the Generalized Power Condition. Hence at sinf  every player in H  must win

every tie with other players in N ' . This is not possible if  H =  N '   since there are not enough prizes for all

the players in N ' . Hence  H =  N '  1  so j  N '  and j  loses  all ties with members of N '  at sinf . Therefore

P jsinf ; G j  0  and  uisinf ; Gi  0  since j  N '  and  j NL .  By the Modified  Least  Lemma his expected

payoff must be zero. 

Cases  (ii)  and  (iii).  The  corresponding  proofs  in  Siegel  apply  without  modification  and  establish  that  in

both cases one player  i  J  has a score in the support of his strategy in which he wins with probability 0 or

arbitrarily close to  0  and has an expected payoff  of at most 0.  By the Modified Least  Lemma i  must  have a

payoff of 0, and by the Generalized Power Condition i  NL  and so i  j .

The above applies for each player j  NL .  Q.E.D.

Generalized  Threshold  Lemma:  In  any  equilibrium   G  of  a  weakly  generic  contest,  the  players  in  Nw

have scores in the support of  their strategies in G that approach or exceed the threshold and, therefore, the

players in Nw have an expected  payoff of at most their power.

The  proof  is  omitted  here  as  the  proof  of  the  Threshold  Lemma  in  Siegel  applies  without  modification

noting only that with constraints players in NL \ m  1  may or may not have negative powers,  however they

still have reaches strictly below the threshold.

From these intermediate results we can establish the first of the two main results of the paper. The Expected

Payoff Result is a generalization of Theorem 1 in Siegel.

Expected  Payoff  Result:  In  any  equilibrium  of  a  weakly  generic  contest,  the  expected  payoff  of  each

player in Nw  is equal to his power which is greater than zero, and the expected  payoff  of each player  in NL

is zero, which is less than his power if he is restricted  at his reach.

Proof:  The  Modified  Least  Lemma  and  the  Generalized  Threshold  Lemma  establish  that  players  in  Nw

have expected  payoffs  equal  to  their  power  which is  greater  than zero by the  Generalized Power  Condition.

The Modified Zero Lemma establishes that the players in NL  have expected payoffs equal to 0. If a player in

NL  is not restricted at his reach, his power is less than or equal to zero. If he is restricted at his reach his power

is greater than zero so his expected payoff is less than his power.  Q.E.D.

Because players’ expected payoffs from the contest depend only on the order of their reaches and on their

valuation  of  winning  at  the  threshold,  the  striking  implication  of  Siegel  continues  to  hold  in  contests  with

constraints; The players’ costs of losing and the shape of vi  away from the threshold do not affect equilibrium
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expected  payoffs.  They  will  typically  have  an  effect  on  equilibrium strategies,  but  not  on  expected  payoffs.

Similarly, presuming that an equilibrium still exists (which will be addressed in the next section) and that the

contest remains  weakly generic,  a  change in the constraint  of any player other  than the marginal  player does

not affect the expected payoff of any player as long as the change does not alter the identity of the marginal

player:

Implications of the Expected Payoff Result:  In any equilibrium of a weakly generic contest,  consider a

small change in a player’s constraint such that the identity of the marginal player remains the same:

 A small change in the constraint of any player other than the marginal player does not affect the payoff

of any player. 

  A  small  change  in  the  marginal  player’s  constraint  does  not  affect  the  payoff  of  any  player  in  NL

(including his own).

  If the marginal player is restricted at km1  then relaxing his constraint (weakly) decreases the expected

payoff of each player in Nw .

Proof:   Follows  directly  from  the  Expected  Payoff  Result,  assumption  A1,  the  definitions  of  reach  and

power  and  the  Generalized  Cost  Condition.  By  the  definitions  of  reach  and  power  any  change  to  a  single

player’s constraint that doesn’t alter the identity of the marginal player will leave the members of the sets NL

and Nw  unaltered. Since there is only one player with reach at the threshold  by the Generalized Cost Condi-

tion, a change in one player’s constraint that doesn’t alter the identity of the marginal player can only alter the

threshold  if  that  player  with  the  changed  constraint  is  the  marginal  player.  If  the  player  with  the  changed

constraint is not the marginal player then all players in NL  have expected payoff of zero before and after the

change and all players i  Nw  have expected payoff of viT  both before and after the change, proving the first

part.  Since the members of NL  are unaltered and  include the marginal player, by the Expected Payoff Result

they all have an expected payoff of zero before and after the change in constraint, proving the second part. By

the  definitions  of  reach and  the  threshold,  if  the  marginal  player  is  restricted  at  km1 ,  then relaxing his  con-

straint  (increasing  km1 )  will  increase  the  threshold.  By  the  Expected  Payoff  Result  players  i  Nw  have

expected payoff of viT  so by A1 increasing T weakly decreases viT , proving the third part.   Q.E.D.

It follows that a player’s expected payoff is affected by a change in his own constraint only if the change in

his constraint switches him between Nw  and NL .  Other changes in his constraint will typically affect equilib-

rium strategies, but they will not affect the player’s own payoffs.

This may have useful applications. Consider a two-stage game in which in the first stage players invest in

relaxing their constraints by increasing their credit limits, adding factory capacity, registering voters, building

an R&D lab etc. Then in the second stage they engage in a contest. The Expected Payoff Result in the second

stage  implies  that  the  investment  decision  in  the  first  stage  would  also  have  an  all-pay  contest  structure.

Players  would  either  want  to  invest  enough  to  become  player  m,  and  not  more,  or  they  would  not  want  to

invest at all.
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4. Existence of Equilibrium

In this section we derive the second main result of the paper which shows that a Nash equilibrium exists in

any strictly generic contest. Classical existence proofs do not apply because players have a continuum of pure

strategies and their payoffs are discontinuous in their choices. A literature based on the path-breaking work of

Reny (1999) has made great strides in proving existence in discontinuous games. While  this literature can be

used to show that equilibrium exists in unconstrained all-pay contests,  unfortunately it does not apply to all-

pay contests with constraints.

For  example,  Monteiro  and  Page  (2007)  shows that  any  compact  game  that  is  upper  semicontinuous  and

uniformly  payoff  secure  has  an  equilibrium in  mixed  strategies.  The  all-pay  auction  without  constraints  has

these  features,  but  the  same  auction  with  constraints  does  not.  Uniform  payoff  security  means  that  in  any

strategy profile each player has a strategy he can use to guarantee almost the same payoff if other players make

small deviations from their strategies. In a contest where all players’ constraints are higher than their reaches

(an effectively unconstrained contest)  if  other  players make small changes to  their strategies each player  can

guarantee at least epsilon below his current payoff by increasing his score slightly or, if that is higher than his

reach, by choosing ai . Hence such contests are uniformly payoff secure. However, with constraints this is not

the case. Epsilon above a players’ current choice may not be feasible while still providing a positive expected

payoff at the initial strategy profile.  This problem can be corrected by making ki  Si for each player.  In that

case for any si  Si, si    Si  for sufficiently small, positive . However in this case players’ strategy sets are

no  longer  compact.  Hence,  in  order  to  satisfy  the  payoff-security  condition  we  must  violate  the  compact

strategy set condition. Similar issues arise when trying to apply any of the existence proofs based on variations

of better-reply security. Hence we have to proceed in another way.

Most existence proofs require compact strategy sets while here we impose the Strategy Set Condition which

requires non-compact strategy sets for a subset of the players and permits them for all players. This is to deal

with a specific problem that arises in finding equilibria in constrained contests. The issue is best illustrated by

a series of examples which provide insight into the approach used in the existence proof.

Example 1: Consider a standard linear two-player all-pay auction with a single prize with a common value

equal  to  two,  visi  2  si  and  cisi  si .  Player  1’s  constraint  is  higher  than  the  value  of  the  prize,

S1  0, 3,  but player 2 is constrained at one, S2  0, 1 . Ties are decided by coin flip. This contest is strictly

generic. Player 2 has a reach of one, player 1 has a reach of 2 and hence player 2 is the marginal player and the

threshold  is  one.  Equilibrium exists  and  is  in  mixed  strategies  which  are  given  by  the  following  cumulative

distribution  functions:  G1s1 s1 2  for  s1  0, 1 ,  and   G1s1  1  for  s1  1.  G2s2  12  s2 2  for

s2  0, 1 .  So  player  1  puts  an  atom  of  probability  of  1/2  at  s1  1and  spreads  the  remaining  probability

uniformly over 0, 1 . Player 2 puts an atom of 1/2 at s2  0  and spreads the remaining probability uniformly

over 0, 1 . This gives an expected payoff equal to one for player 1 and an expected payoff of zero for player

2 as required by the Expected Payoff Result and no player has a profitable deviation.

Example  2:  Take  the  contest  from  Example  1  and  change  the  action  space  for  player  2  to  include  his

constraint, S2  0, 1 .  In this case the contest is weakly generic but it is not strictly generic as it violates the

Strategy Set Condition. It is now possible for player 2 to deviate from the equilibrium strategy in Example 1,

matching player 1 at his atom at s1  1. Deviating to s2  1  gives player 2 a probability of winning of 3/4 and

an expected payoff of 1/2. This is a violation of the Expected Payoff Result since player 2 is still the marginal

player and therefore must have an expected payoff of zero. In order to create an analogue of the equilibrium in

Example  1,  player  1  needs  to  move  his  probability  mass  high  enough  so  that  player  2  cannot  match  that

choice. So he needs to move it just above s1  1. But “just above” is not defined.
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Example  3:  Take  the  contest  of  Example  2  but  abandon  the  tie-breaking  rule.  Replace  it  with  a  rule  in

which ties are decided by coin flip everywhere except at si  1  where all ties are decided in favor of player 1.

This  may or  may not  be  a  reasonable  tie-breaking  rule  in  a  particular  application,  but  it  does  mean that  the

equilibrium strategies from Example 1 also form an equilibrium in Example 3. It is not possible for player 2 to

capture an excessive payoff by deviating to s2  1, even though that score is now technically feasible. 

In general, when player i is restricted at his constraint, which may be the case for any of the players in N


L

not  just  the  marginal  player,  equilibrium  may  require  a  rival  to  put  an  atom  just  above  i’s  highest  feasible

score. This is well defined only when the Strategy Set Condition holds. However, the tools in the literature for

proving  existence  of  equilibrium  largely  require  compact  strategy  sets.  Hence  we  start  with  a  game  like

Example  1,  except  that  we  don’t  yet  know  whether  equilibrium  exists.  Then  we  create  a  new  game  with

compact strategy sets as was done moving from Example 1 to Example 2.  Then we use the results of Simon

and Zame (1990) to  show that  there exists some tie-breaking rule  under which equilibrium exists in the new

game, as in Example 3. We then establish that at least one of the equilibria of the new game with the new tie-

breaking rule  is  also an equilibrium of the original  game with its  tie-breaking rule  replaced by the new rule.

And finally we use an insight from Siegel to show that this equilibrium is also an equilibrium of the original

game for any tie-breaking rule. It is important to note that while the result of Simon and Zame (1990) is used

as an important intermediate step, it is just an intermediate step. The existence result applies to contests with

any tie-breaking rule, not just the special rule from Simon and Zame (1990).

We will first need to establish the Tie Lemma, which in the unconstrained case held for all contests whether

generic or not. The proof is built on the ability of all players with atoms at x to exceed x if desired, and so the

lemma does not apply for contests that are not strictly generic as a player cannot exceed x if x  ki  which can

happen when the Strategy Set Condition does not hold.

Modified  Tie  Lemma:  In  any  equilibrium  of  a  strictly  generic  contest,  if  two  or  more  players  have  an

atom at  a  score  x,  that  is,  choose x  with  a  strictly  positive probability,  then players  who have an  atom at  x

either all win with certainty or all lose with certainty  when choosing x.

Proof:   Since  their  reaches  are  less  than  or  equal  to  the  threshold  none  of  the  n m  players  in  NL will

choose  scores  exceeding  the  threshold.  Hence  if  x  T  then  any  player  choosing  x  will  win  with  certainty,

satisfying the lemma. So we only need to consider x  T .  By the Generalized Power Condition all players in

Nw  have reaches greater than T  so x  ki   i  Nw . By the definition of N


L  all players in NL \ N


L  have ri  ki .

These players will only place an atom at x  if x  ri  and so if any player i  NL \ N


L  places an atom at x  it must

be the case that  x  ki . Finally, if any player i  N


L  places an atom at x  it must be the case that x  ki  since

ki  Si  by the  Strategy Set  Condition.  Thus for  any players  placing  an atom at  x  T  it  must  be  that  x  ki .

Hence all players with an atom at x  T  have x    Si  for sufficiently small   0. From this, the proof of the

Tie Lemma in Siegel applies without modification and hence is omitted here. Q.E.D.

We  now  prove  the  second  primary  result  of  the  paper.  This  is  a  modification  of  the  existence  result  in

Siegel, Corollary 1. It is not a strict generalization because Siegel shows the existence of equilibrium for any

unconstrained contest, whether generic or not. Here we include contests with constraints but as a consequence

have to limit the domain to strictly generic contests.

Existence of Equilibrium  Result: Every strictly generic contest has a Nash equilibrium.
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Proof: Take a strictly generic contest and define Na  as the set of players who are constrained at their head

start,   Na i  N : ai  ki .  By  the  Generalized  Power  Condition,  the  definition  of  N


L  and  the  Strategy Set

Condition, Na  Nw  and hence  Na   m  and ai  T   i  Na . If  Na   m  then m players have head starts

which exceed the threshold so each player i  N  playing a pure strategy of si  ai  is  an equilibrium, and the

result holds. If  Na   m  construct a new contest C  which is identical to the original contest except with the

players  in  Na  and   Na   prizes  removed.  In  the  original  game  the  players  in  Na  are  by  necessity  entirely

passive since for them Si  ai  and  they each win a prize with certainty since ai  T .  Hence removing them

and their prizes does not change the strategic environment for any remaining player at any feasible score that

is not strictly dominated. The contest is still strictly generic, the threshold does not change, players in NL  are

either unwilling or unable to exceed the threshold and players in Nw  win with certainty with any score greater

than  the  threshold  in  both  games.  Hence  for  the  players  that  are  in  both  games,  the  strategies  that  form an

equilibrium in C  will also form an equilibrium in the original game, with the players in Na  playing their only

feasible  strategy of  choosing  si  ai  with  certainty.  Hence  it  suffices  to  show that  C  has  an  equilibrium.  In

what follows define all variables with respect to contest C . So N  is the set of players in C , m  is the number of

prizes in C , players are indexed with respect to the order of their reaches in C  and so on. 

Consider a new contest C  which is identical to C except that each player’s set of feasible scores is capped

at  K  maxiN ri   .  So  for  each player  i  in  C ,  Si
  Si  ai, K .  Define  each player’s  constraint  in  C as

ki
  sup Si

  minki, K .  Since  in  C  scores  greater  than K  are  either  infeasible  or  strictly  dominated  by ai ,

any equilibrium of C  is also an equilibrium of C. Hence it is sufficient to show that C  has an equilibrium.

Let  Nk  be  the  set  of  players  whose  constraints  are  not  in  their  strategy  set  in  C ,  Nk  i  N : ki
  Si

 .

Create a third contest C  which is identical to C  but with an expanded action space for the players in Nk  so

that all players in C  have ki
  in their strategy set. Specifically, for each i  N  let Si

  ai, ki
 , for all si  Si



let  vi
si  visi  and  ci

si  cisi ,  and  for  all  si  Si
 : si  Si

  let  vi
si  limz ki

 viz  and

ci
si  limz ki

 ciz ,  noting  that  si  Si
 : si  Si

  only  for  i  Nk  at  si  ki
 .  So  we  have  added  a  single

point, ki
 , to the strategy set of players in Nk  ensuring that all players have compact strategy sets. The resulting

game is still weakly generic, but it is not necessarily strictly generic. It continues to meet all the other condi-

tions but it violates the Strategy Set Condition for players in N


L . However, because C  has compact strategy

sets it is more amenable to analysis than C .

In particular, the results of Simon and Zame (1990) show that if we abandon the tie-breaking rule shared by

C  and C ,  then there exists some tie-breaking rule, which may be dependent on the score and/or identity of

the players, in which C  has at least one mixed-strategy equilibrium when that tie-breaking rule is employed.

Denote the games when this tie-breaking rule is employed by C  and C  respectively. So C  has at least one

equilibrium, but strategy profiles that form an equilibrium in C  may or may not form an equilibrium in C .

However below we show that there is at least one equilibrium of C  whose equilibrium strategies also form an

equilibrium in C .  The key to this is showing that there is at least one equilibrium of C  in which no player

puts an atom at his constraint, ki
 .

Take an equilibrium G of  C  and a player i  Nw .  Take a small  >0 and let b  maxai, T  .  Since i

can win  with certainty with any si  T  by the Generalized  Power Condition,  if  there exists an >0 such that

vi
ki

  vi
b  then  in  Gi  he  must  place  zero  probability  on  si  ki

 .  By  A1  the  only  other  possibility  is

vi
ki

  vi
b    >0,  however  small.  In  this  case  it  is  possible  that  in  Gi  player  i  has  an atom at  si  ki

 .

Suppose this is the case and construct an alternative strategy for i which is the same as Gi  but with the upper

end  of  the  distribution  truncated  at  some  score  h  b, ki
 :  G


isi  Gisi    si  h  and  G


isi  1    si  h .

Replace i’s strategy in G  with  this new strategy.  G  still  forms an equilibrium of C .  Player  i  wins with cer-

tainty  with  all  si  T  and  each  score  gives  the  same  payoff  so  altering  his  strategy  does  not  alter  his  own
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payoffs. The new strategy for i does not alter the probability of winning for any player at any score less than h,

so  such  scores  still  yield  the  same  expected  payoff  for  each  player.  For  all  j  NL ,  scores  s j  h  are  either

infeasible  or  strictly  dominated  by a j ,  so  G j  still  forms  a  best  response.  For  all  j  Nw ,  player  j  wins  with

certainty with any s j  T  whether i plays Gi  or G


i , so the new strategy does not change the expected payoff of

j for any s j . By iterating this argument over each  i  Nw  we can construct an equilibrium G of C  in which no

player in Nw  places an atom at si  ki
 . In what follows consider such an equilibrium. 

We now show that in G no player in NL  places an atom at his constraint either. The reach of each player in

i  NL \N


L  is strictly less than his constraint and so si  ai  strictly dominates si  ki
  by A3. So we only need

to consider the players in N


L . The proof will proceed by contradiction: 

Suppose  that  there exists an i  N


L  with an atom at  si  ki
 .  Considering i’s probability of winning when

choosing si  ki
 , one of three cases must be true: Piki

; Gi  0, Piki
; Gi  1 or Piki

; Gi  0, 1 .

Case 1:  Piki
; Gi  0. By the All-Pay Condition player i  N


L  receives a negative payoff when choosing

si  ki
 , a contradiction of the Expected Payoff Result. 

Case 2:  Piki
; Gi  1. If i>m+1 then ki

  rm1  by the Generalized Power Condition, so player m+1 can

choose  sm1  maxam1, ki
    and  win  with  certainty  receiving  a  payoff  strictly  greater  than  zero  by the

Generalized Cost  Condition,  a  violation of  the Expected Payoff Result. So  if  Piki
; Gi  1  then i  m  1.

But  since  i  N


L ,  vm1
ki

  0  by  the  Strict  Cost  Condition.  So  player  m+1  receives  a  strictly  positive

payoff, which violates the Expected Payoff Result.

Case  3:  Piki
; Gi  0, 1 .  By  the  definition  of  N


L ,  the  Constraint  Condition  and  the  fact  that  Si  is  an

interval, for all players ji  with sufficiently small ,  if ki
  , ki

  S j
  then ki

, ki
    S j

 .  Hence for

small   no player ji  will  put any probability on s j  ki
  , ki

  as doing so  is either infeasible or moving

such probability to s j  ki
   , just above i’s atom, will result in an increase in his probability of winning of at

least  Giki
  limzki

 GizPiki
; Gi  0  at negligible cost, by A1. Likewise no player ji who has any

probability  of  losing  ties  to  i  at  ki
  will  place  any  probability  at  s j  ki

  since  increasing  his  score  to

s j  ki
    will eliminate the non-zero probability of such ties. Hence player i’s probability of victory will not

decrease  if  he  drops  his  atom  from  si  ki
  to  si  ki

   .  Since  Piki
; Gi  0  this  would  increase  his

expected payoff by the Strict Cost Condition and A1, a contradiction.

Therefore  there exists  at least  one equilibrium of C  in which no player  places an atom at his  constraint.

Take such an equilibrium G and a player i  Nk . Since si  ki
  is a zero probability event in Gi , removing ki



from Si
does not change the expected payoffs in G for any player at any feasible score and Gi  is still a valid

distribution  function.  Hence  if  we  remove  ki
  from  Si

  for  all  i  Nk ,  G  still  forms  an  equilibrium  of  the

resulting game which is C .

To  complete the  proof we need to  show that  this equilibrium of C    a  game with a  special  tie-breaking

rule   is also an equilibrium of  C    a game with the original tie-breaking rule. This uses the same steps as

Siegel (the last two paragraphs of the proof of Corollary 1). Therefore we omit that portion of the proof here

to save space, and just point out that in Siegel C


 is our C , ui
  denotes player i’s expected payoff in the equilib-

rium G  of  C ,   and  the  Modified  Tie  Lemma applies  rather  than the  Tie  Lemma that  is  used  in  Siegel.

Q.E.D.

5. Application

Derivation  of  players’  equilibrium expected  payoffs  only  requires  simple  calculations  of  the  reaches  and

powers  of  the  players  in  Nw .  To  illustrate  the  use  of  the  results  consider  the  following  application from the

literature. 

13



Meirowitz  (2008)  analyzes  the  sources  of  incumbency  advantage  in  a  first-past-the-post  electoral  contest

where  politicians  compete  in  campaign  spending.  One  dollar  of  campaign  spending  raises  the  score  of  the

political  candidate  by one.  The  incumbent  (I)  and  the  challenger  (C)  have  a  common valuation  of  the  prize

which is normalized to 1. The candidates have potentially different marginal utility cost of raising funds, i  
i  I, C . Meirowitz argues that incumbents tend to be more efficient at fundraising. As a sitting officeholder

an incumbent  is  in  a  position to  dispense political  favors  and  hence  has better  access  to  resources,  in  which

case I  C .  Meirowitz’s  framework allows for a positive headstart advantage   0  for the incumbent due

to  existing  name  recognition.  In  the  analysis  for  spending  limits  with  a  positive  headstart,  Meirowitz  only

presents the case where the spending limit, m , is so restrictive that the incumbent would win the contest even if

the  challenger  where  to  spend  the  maximum  permissible  amount  and  the  incumbent  were  to  spend  zero,

m   . Hence the equilibrium is in pure strategies where no candidate engages in campaign spending.

In application (i)  below we extend Meirowitz’s  analysis to  less  restrictive spending limits  where the limit

does not completely curb competition, m   . Pastine and Pastine (2012b) addressed this via full derivation of

the players’ equilibrium strategies. This example demonstrates how much simpler the task becomes using the

Expected Payoff Result.  In application (ii) we extend the analysis to elections with more than two candidates

and we allow the effectiveness of spending to vary across candidates.

(i) A spending limit that does not completely curb competition: The main argument in favour of spend-

ing  limits  is  that  they  restrict  incumbents’  ability  to  exploit  their  fundraising  advantage  -  see  the  elegant

argument from Justice Stevens in the US Supreme court case McConnell v. FEC (2003). Opponents of limits

suggest that a spending limit restricts the challenger’s ability to catch up with the incumbent who often enjoys

a headstart advantage due to the incumbent's initial name recognition. In his dissenting opinion in McConnell

v. FEC (2003), Supreme Court Justice Scalia writes: “… any restriction upon a type of campaign speech that

is equally available to challengers and incumbents tends to favour incumbents.” Opponents of spending limits

also  follow the  line  of  logic  in  Stigler  (1971)  and  suggest  that  incumbents  would  not  legislate  limits  if  the

legislation did not serve them.

The  Expected  Payoff  Result  can  be  applied  to  show  that  with  any  headstart  advantage,    0,  however

small,  in  any  equilibrium a  spending  limit  benefits  the  incumbent  no  matter  how dramatic  the  difference  in

fundraising abilities may be. The “headstart advantage” argument of the opponents of spending limits always

trumps the “fundraising efficiency”  argument of the proponents of limits. 

In  order  to  use  the  Equilibrium  Existence  Result  we  make  one  modification  to  the  Meirowitz  (2008)

framework.  In  Meirowitz  (2008)  the  contest  with  spending  limits  is  weakly  generic,  but  not  strictly-generic

because spending is less than or equal to the limit,  a violation of the Strategy Set Condition. We require that

spending  must  be  strictly  less  than  the  limit,  creating  a  strictly-generic  contest  and  hence  the  Equilibrium

Existence Result applies. In this context little is lost by the change, as continuous spending games such as this

are intended  as analytically tractable  approximations to  the  discrete  choice  reality,  where monetary units  are

not  infinitely  divisible.  Since  equilibrium  always  exists  in  discrete-choice  games,  choosing  a  continuous-

choice approximation in which equilibrium also exists seems reasonable.

Next  convert  Meirowitz’  framework  into  the  notation  of  this  paper.  The  monetary  limit  on  campaign

spending, m ,  is  common to  both players.  However,  since the incumbent  has a headstart advantage  of aI  
while  aC  0,  the  constraints  on scores  are  asymmetric:  kI   m  and  kC =m .  The  challenger’s  payoff  and

cost  functions  are  given  by  vC sC  1  C sC and  cCsC  C sC  for  sC   0, kC .  Since  the  incumbent

starts  with a  score of    his  payoff function is  vIsI  1  IsI    and  cIsI  IsI    for  sI  , kI .

Therefore  the  reach  of  the  challenger  is  rC   minm , 1  C  and  the  reach  of  the  incumbent  is

rI  min m,   1  I . 
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Without a spending limit the challenger is the marginal player; the reach of the challenger is lower than the

reach  of  the  incumbent,  1  C    1  I .  From  the  Expected  Payoff  Result  the  challenger  has  zero

expected  payoff.  The  threshold  is  1  C ,  so  the  incumbent  has  an  expected  payoff  equal  to  his  power,

1  I1  C    0.

If  the spending limit  is  less  than 1  C ,  then it  is  binding and  rC  m  1  C .  Since rC  is  less  than the

incumbent’s  reach  rI  min m,   1  I  the  challenger  is  still  the  marginal  player  and  his  expected

payoff remains zero. However the limit reduces the challenger’s reach (the threshold of the game) and hence

increases  the  expected  payoff  of  the  incumbent  to  1  Im    0.  The  imposition  of  a  spending  limit

always benefits the incumbent as long as the incumbent has a headstart advantage however small that may be.

In addition, suppose that prior to the above game the two parties had the opportunity to increase their initial

score ai  through voter registration drives. Increases in aI would have a positive benefit for the incumbent but

marginal increases in aC  would not change the challenger’s expected payoff.

(ii) A spending limits with multiple candidates and asymmetric campaign spending effectiveness:   In

countries  such  as  France  and  the  U.K.  where  campaign  spending  limits  are  in  place,  often  more  than  two

political parties compete. Elections with more than two candidates are significantly more difficult to analyze if

full derivation of the equilibrium is required. Therefore the literature largely focuses on two-candidate races as

in  Meirowitz  (2008)  and  Pastine  and  Pastine  (2012b).  However  since  the  Expected  Payoff  Result  and  the

Existence  of  Equilibrium  result  do  not  require  the  full  derivation  of  equilibrium,  we  can  easily  add  more

candidates and compute which political candidate benefits from a spending limit in any equilibrium. Below we

employ our results in a model with multiple candidates who may have asymmetric campaign spending effective-

ness.  Application  (i)  already  demonstrates  that  the  “headstart  advantage”  argument  against  spending  limits

always  dominates the  “fundraising efficiency”  argument  in favor  of  spending limits  if  candidates  have equal

spending efficiency. Here we show that limits may benefit an opponent if his spending is more effective, which

is often found empirically. A moderate cap on spending may benefit a charismatic third-party candidate, but a

very restrictive cap benefits the incumbent. 

Add a third-party candidate to the model described in application (i) with the same notation. Suppose that

the third-party candidate (candidate L) is charismatic and has leadership skills so that one dollar of campaign

spending increases his score by L  1. So the third-party candidate’s cost of achieving the score sL  is  LL
sL

and his  reach is rL  minLm
, L  L .  In order  to  restrict  attention to  the most interesting cases,  assume

that as a third party candidate he lacks a large fundraising base so fundraising is more onerous for him than for

candidate C, L  LC, L1  .  This  implicitly assumes that  the range exists,  i.e.  the incumbent’s headstart

advantage is not too large,   L1L C
.  

The contest is strictly generic except when parameter values are such that there are two players with reach

at  the  threshold,  which  is  a  violation  of  the  Generalized  Power  Condition.  L  and  C  have  the  same  reach  if

m  L  L . And L and I have the same reach if m  L1  or m   LL
   . Notice that for any given m , if L

was drawn from any continuous distribution, the contest would be strictly generic with probability one. So if

the  spending limit is  legislated before candidates’ abilities are randomly drawn and become common knowl-

edge, the existence and payoff results will apply.
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In the absence of a spending limit rI  rC  rL .  Since the contest is strictly generic we know that at least

one  equilibrium  exists  by  the  Equilibrium  Existence  Result.  The  challenger  is  the  marginal  player.  He  is

disadvantaged because  the incumbent  has  a  head-start  advantage  and  is  a  better  fundraiser.  By the  Expected

Payoff Result, in any equilibrium the incumbent has a positive expected payoff of 1  I 1C
    0,  while

the challenger and the third party candidate receive an expected payoff of zero. The third-party candidate has

greater  effectiveness  of  campaign  spending  than  either  of  his  rivals  but  this  is  not  enough  to  outweigh  the

incumbency advantage or the superior fundraising abilities of his rivals.

However,  with  a  common  monetary  cap  m   1L
,  all  candidates  are  restricted  at  their  score  constraints

and  the  reaches  of  the  candidates  are  given  by rI   m ,  rC  m  and  rL  Lm
 .  If  the  cap  is  moderate

m   L1 , 1L
 , then rL  rI  rC  as shown in Figure 3.
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Although all three candidates face the same legal constraint on campaign spending, their asymmetries result

in  different  constraints  on  their  scores.  The  incumbent’s  head-start  advantage  means  that  his  reach is  higher

than the challenger’s. And the third-party candidate’s effectiveness in spending means that his reach is higher

than the challengers, and with these parameters higher than the incumbent’s as well. The incumbent is now the

marginal player. The threshold of the contest is T  m . By the Expected Payoff Result, the incumbent and

the  challenger  have  expected  payoffs  of  zero  and  the  third-party  candidate  receives  an  expected  payoff  of

1  L mL
  0.  With  a  moderate  limit,  the  campaign  spending  effectiveness  of  the  third-party  candidate

overwhelms the head-start advantage of the incumbent. Hence a moderate limit hurts the incumbent compared

to no restrictions.

 If  the  cap  is  very  restrictive,  m  0, L1 ,  then  the  order  of  candidates’  reaches  is   rI  rL  rC .  The

third-party  candidate  is  the  marginal  player  and  Lm
  is  the  threshold.  By  the  Expected  Payoff  Result,  the

incumbent  has  the  expected  payoff  1  Lm
  I  0.  The  challenger  and  the  third-party  candidate  have

expected  payoff  of  zero.  The  head-start  advantage  of  the  incumbent  overwhelms  the  campaign  spending

effectiveness  of  the  third-party  candidate  with leadership  skills.  The  cap  is  too  restrictive  for  the  third-party

candidate to catch up with the incumbent's head start.  Note that  the expected payoff of the incumbent in this

case is higher than the expected payoff he would have had if there were no campaign spending restrictions. 

6. Participation

A player  is  said  to  participate  in  an equilibrium of  a  contest  if  he  chooses  scores  with  a  positive  cost  of

losing with strictly positive probability. Here we present a very simple generalization of the results on participa-

tion for unconstrained contests to contests with constraints. 

Participation  Result: In a strictly generic contest with or without constraints, if 

(i) cm1maxam1,xvm1am1  cixviai      for all x  Si : x  ri and cix  0
and

(ii) vm1maxam1,xvm1am1  vixviai      for all xSi : x  ri
then player i does not participate in any equilibrium. In particular, if these conditions hold for all players in

NL  m  1  then only the m+1 players in Nw  m  1  may participate.

Since  with  constraints  it  is  possible  for  sup Si  km1  sup Sm1  even  when  i  m  1,  the  conditions

restrict  attention  to  xSi : x  ri  which  implies  x  km1 by  the  Generalized  Power  Condition.  Since  in

equilibrium player i will not exceed his reach this change is innocuous. The proof is otherwise identical to the

proof of the corresponding result in Siegel and so is omitted. 

So  a  player  will  not  participate  if  for  every possible  score  he  might  choose:  (i)  his  cost  of  losing  at  that

score  relative  to  his  value  of  winning  with  no  effort  is  strictly  higher  than  the  same  ratio  for  the  marginal

player and (ii) his value from winning at that score relative to his value of winning with no effort is weakly less

than the same ratio for the marginal player. This simply says, unsurprisingly, that if at every possible score a

player has higher (normalized) costs and a lower (normalized) valuation than the marginal player, that player

will not participate.

This  straightforward  result  may be  useful  for  two  reasons.  The  corresponding  result  for  contests  without

constraints  has  been  crucial  in  developing  general  algorithms  for  finding  players’  equilibrium  strategies  in

unconstrained  contests,  see  Siegel  (2010  and  2014),  and  so  the  extension  to  constrained  contests  may  also

prove useful. Moreover,  extensive work has been done exploring participation in contest models, see Hilman
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and  Riley (1989),   Ellingsen (1991),   Baye  et  al.  (1993  and  1996),  Siegel  (2012)  and  Klose  and  Kovenock

(2015).  One of the major issues in this literature is finding conditions under which only m+1  players partici-

pate  in  an  (unconstrained)  all-pay  auction.  The  Participation  Result  provides  sufficient  conditions  for  these

results to generalize to contests with constraints. This can be seen by considering a well-known example from

the literature.

Example 4:  Take the following model from Hillman and Riley (1989)  and Baye et al.  (1993 and  1996).

There is m=1 prize and n3 players with visi  Vi  si , cisi  si  and Si  0,  . Ties are decided with even

probability.  Denote  the  players  A,  B,  C  etc.  and  assume  VA  VB  VC  VD   Vn .3 Hillman  and  Riley

(1989) shows that there exists an equilibrium where only the two players with the highest valuation participate

and  Baye  et  al.  (1993  and  1996)  shows that  there  does  not  exist  any equilibrium where  any other  player  or

players participate. These results can also be seen by straightforward application of the Equilibrium Existence

Result  and  the  Participation  Result  since  player  B  is  the  marginal  player  and  for  i  C, D, ... n  (i)
xVB
 xVi

and (ii)  VBxVB
 VixVi

 for all x  0, Vi .

Now  impose  a  constraint  on  player  B  so  that  SB  0, kB .  Consider  first  a  constraint  in  the  range

kB  VC,  . The introduction of the constraint is not innocuous when kB  VC, VB ; The constraint changes

both the equilibrium and the expected payoff for player A. This can be seen from the Expected Payoff Result

which, since the threshold is kB ,  yields an expected payoff to player A of VA  kB  0  which implies that the

equilibrium strategies of the players are altered by the existence of the constraint. Nevertheless, the participa-

tion results  of  Hillman and  Riley (1989)  and  Baye  et  al.  (1993  and  1996)  are  robust  to  the  imposition of  a

constraint on player B in the range kB  VC,  . For kB  VC  the game is strictly generic and hence from the

Equilibrium Existence  Result  we  know that  at  least  one  equilibrium exists.  For  kB  VC  player  B is  still  the

marginal player,  and hence direct application of the Participation Result implies that only the m+1  players in

Nw  m  1  participate, so only A and B participate in any equilibrium.

However, in the range kB  0, VC  more than m  1  players may participate. When the constraint is in this

range, player C is the marginal player and the threshold is VC . Application of the Participation Result implies

that players D, E . . . n  do not participate in any equilibrium, so they all choose scores of zero with probability

one.  However  participation  by  player  B  cannot  be  ruled  out  as  cm1maxam1,xvm1am1  xVC
 cBxvBai 

xVB
 for  all

x  0, kB .

In  fact  for  kB  0, VC  all  three  must  participate.  Player  ANw  will  participate  since  the  Generalized

Threshold  Lemma  shows  he  has  a  score  in  the  support  of  his  strategy  in  G  that  approaches  or  exceeds  the

threshold. Since A’s payoffs from both winning and losing are strictly decreasing in his score, the only reason

he would choose such a high score is that C has a score in the support of his strategy in G that approaches the

threshold. So C participates as well. Now conjecture that there exists an equilibrium where player B does not

participate.  In  this  equilibrium  player  B  chooses  sB  0  with  certainty  and  his  probability  of  winning  is

arbitrarily close to zero by the Modified Zero Lemma. As shown in Hillman and Riley (1989) and Baye et al.

(1993 and 1996) the two-player game with just players A and C has unique equilibrium distribution functions

of GAx  x  VC  and  GCx  VA  VC  x  VA  for   x  0, VC .  With  these  strategies,  a  score  of  zero  has

zero probability of winning. Hence in the three-player game if player B plays his conjectured pure strategy of

sB  0, players A and C will play according to the Hillman and Riley strategies. However, given these conjec-

tured  equilibrium strategies,  in  the  full  game with  many players,  if  player  B  chooses sB  0, kB  he  gets  an

expected  payoff  of  GAsBGCsBVB  sB 
sBVA VC

VBVA  VC  sBVB  VAVC  which is  greater  than zero

for sufficiently small sB . So player B has a profitable deviation which contradicts the Expected Payoff Result.

Hence, when kB  0, VC  in any equilibrium all three players A, B and C must participate. 
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7. Conclusion

In this paper, we analyze constraints on players’ choices in a broad class of all-pay auctions which incorpo-

rates  contests  with  many players  and  multiple  prizes,  contests  with  conditional  investments,  head  starts  and

non-ordered payoff functions. In the first main contribution of the paper we derive simple closed-form formu-

lae  for  players’  expected  payoffs  in  any equilibrium where  some,  all  or  none of  the players  are constrained.

The formulae are straightforward to calculate and do not require the derivation of the equilibrium or equilibria.

In the second main contribution of the paper we employ the Expected Payoff Result to prove the existence

of equilibrium. This is  not-trivial since player payoffs are discontinuous in their pure-strategies and there are

infinitely many pure-strategies. 

Together these results mean that in applications one can easily calculate player expected payoffs in all-pay

contests  with  constraints,  bypassing  the  need  for  a  full  characterization  of  the  equilibrium  or  equilibria.  In

some  applications,  the  expected  value  of  the  contest  to  the  players  may  be  the  main  item  of  interest.  For

instance  the  question  may concern  the  impact  of  a  policy change  on  the  players  in  equilibrium,  such  as  the

relaxation of a liquidity constraint, imposition of a binding deadline, a salary cap, or utilization of an affirma-

tive  action  policy.  The  expected  value  of  the  contest  to  the  players  is  also  potentially  useful  in  analyzing

players’ incentives to invest in relaxing their constraints prior to the contest. We show that no player has any

incentive to marginally relax his constraint. A relaxation of a player’s constraint is only beneficial to him if it

is a significant enough change to allow him to have a higher reach than all but m  1  of his competitors  and

further relaxation has no benefit to him.

In  other  applications  where  full  characterization  of  the  equilibrium  is  of  interest,  calculation  of  players’

expected  values  from the  contest  is  the  first  crucial  step  since  typically all-pay contests  have  equilibrium in

mixed strategies.
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Notes

1 See, among others, Hillman and Samet (1987), Hillman and Riley (1989), Ellingsen (1991), Baye et
al. (1993), and Konrad (2002) for contests in rent seeking; Che and Gale (2006), Kaplan and Wet-
tstein (2006), Pastine and Pastine (2013) and Szech (2015) for political contests;  Bond (2009) for
litigation contests; Clark and Riis (1998) for job tournaments; Pastine and Pastine (2011) for advertis-
ing competition; Fu (2006) and Pastine and Pastine (2012a) for affirmative action in college admis-
sions. See also Che and Gale (1996), Laffont and Robert (1996), Gavious et al. (2002), Dekel et al.
(2007), Sahuguet (2006), Kirkegaard (2008), and Pai and Vohra (2014) for frameworks with incom-
plete information and constrained players. See Rapoport and Amaldoss (2000) for an experimental
analysis of all-pay auctions with bid caps and the comment in Dechenaux et al. (2006). See Megidish
and Sela (2014) for constraints in a sequential contest. See Konrad (2009) for an extensive survey on
contests. 

2 In order to emphasize the dependence of player i’s probability of winning and expected utility on the
strategies of the other players we’ve altered the notation in Siegel slightly here. When following the
proofs  in  Siegel  it  is  useful  to  note  that  our  Pisi; Gi  is  the  same  as  Siegel’s  Pisi  and  our
uisi; Gi  is the same as Siegel’s uisi .

3 The authors also permit equality of valuation for the first four players. Here we restrict the domain in
order to ensure a strictly generic game throughout the example.
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