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1. Introduction 

        
Many publications advocating approaches for dealing with missing data in regression type 

analyses have appeared in both the econometrics and mainstream statistical literature.  

Reviews of the latter are contained in Little (1993), Schafer (1997), Allison (2001) and Little 

and Rubin (2002).  In the econometrics literature, relevant papers commence from Dagenais 

(1973), continuing through Gourieroux and Monfort  (1981) and Conniffe (1983), and more 

recently Horowitz and Manski (2006),  with a recent overview provided in Cameron and 

Trivedi (2005). Yet enthusiasm for the practical application of the methods seems muted at 

best.  To quote the popular textbook by Wooldridge (2006), page 326: 

 

    There are ways to use the information on observations when only some variables are 

missing, but this is not often done in practice. The improvement in the estimators is usually 

slight, while the methods are somewhat complicated. In most cases, we just ignore the 

observations that have missing information.  

 

While there are instances where this may be true, particularly when the proportion of 

incomplete data is small, there are many circumstances when it is unlikely to be the case. A 

well-known case arises when the regressors in the model are orthogonal. Consider a situation 

where the dependent variable, Y, and an explanatory variable, x, are recorded for the full 

sample of n observations but another explanatory variable, w, is only recorded for a subset, r, 

of the original sample.  When w and x are orthogonal, we know that the simple regression of 

Y on x over all n observations, ignoring w, is the appropriate minimum variance estimator of 

the effect of x on Y conditional on w. A regression of Y on x and w for the complete cases 

would result in a similar point estimate but with a higher variance. Clearly if n is large 

relative to r the gain from employing the extra (n –r) observations could be very substantial, 
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with the ratio of variances asymptotically of order r
n

.  This argument obviously generalises 

to multiple x and multiple w variables. 

In practice, w and x are unlikely to be orthogonal, but it seems reasonable that if we 

were to assume that the r and (n– r) observations could be regarded as random samples from 

the same population we may be able to combine information available from both the full and 

complete case samples so as to obtain more precise estimates. The appropriate 

implementation formulae for the linear regression case have been presented in the papers 

cited earlier and the potential for precision improvement demonstrated there. In this paper we 

take a likelihood based approach that gives efficient estimators even when the Y variable is 

unobserved except for its sign.  The approach also reproduces existing results for other 

models with this missing value problem, including linear regression, but the paper 

concentrates on the probit model. We provide straightforward, explicit, formulae for efficient 

coefficient estimators and their variances, which have not appeared previously in the 

literature for the probit model.  We show, both by simulation and by analysis of real data, 

that our estimator outperforms alternative approaches, such as complete case analysis and 

multiple imputation techniques, for the given data structure.  Our approach, with its explicit 

formulae for estimators and variances, also has virtues of transparency. 

As with all approaches to dealing with missing data our estimator requires 

assumptions concerning the randomness of missing values. There is a large literature of 

considerable antiquity dealing with types of missingness. For example, Rubin (1974, 1976) 

outlines much of the basic terminology that has since been adopted and discusses the 

consequences of alternative patterns of missingness. In keeping with the majority of existing 

approaches we assume that the data are missing at random (MAR).1 Data on w are said to be 

missing at random if the probability of missing data on w is unrelated to the value of w 

                                                           
1 Horowitz and Manski (2006) discuss the construction of parameter bounds in the worst case scenario 
where the researcher has no prior information about the parameter of interest or the process that 
generates the missing data. In this conservative case small increases in the proportion of incomplete 
observations causes large reductions in the information about population parameters that is available 
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conditional on other variables in the model. There will be no problem with the assumption if 

the r observations have been deliberately chosen at random from the n.  This is quite 

common in real world data sets when some variables are more expensive to measure than are 

others.  Deliberate “double sampling” for sample surveys is described by Cochran (1963) 

with the objective of either maximising estimation precision for given financial resources or 

minimising the cost of attaining a specified precision. A large scale example of such a 

procedure is the data collection undertaken by the U.S. Bureau of the Census when collecting 

Census data.2 Here each household receives either a short-form or a long-form. The long-

form questionnaire includes the same 6 population questions (related to age, gender and 

marital status) and 1 housing question that are on the Census short-form, plus 26 additional 

population questions (including education, health, employment status and income) and 20 

additional housing questions. On average about 1 in every 6 household received the long 

form and gives rise to exactly the data structure analysed in this paper. 

Even in controlled randomised experiments the same motivation for limiting 

expensive variable measurement has repeatedly led to double sampling schemes (for 

example: Conniffe and Moran, 1972; Engel and Walstra, 1991; Caseur, 2005). The 

transparency property of our approach is particularly useful at the design stage of such 

observational studies.  With an explicit formula for the variance of interest, the number of 

observations needed to attain a desired precision can be determined as can the optimal (in a 

cost minimisation sense) allocation between complete and incomplete observations.  

The data structure of r complete and (n–r) incomplete observations also arises 

frequently in econometrics through mechanisms other than deliberate random sampling.  For 

example in many fields, such as labour economics, there is a growing tendency to draw data 

from multiple sources. This gives rise to a number of possibilities. It may be the case that the 

sample size differs between the two sources. Dolton and O’Neill (1996) presented an 

evaluation of a government training programme in the UK where data on personal 

                                                                                                                                                                      
from the data. In their application almost all of the bounds are very large and span zero.  In addition the 
computation of the bounds may be very time consuming. 
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characteristics such as sex, age, treatment status and some outcome data were obtained at the 

initial interview and design stage for the full sample of 8925. However other data, such as 

more detailed personal characteristics, previous employment history, search behaviour and 

data on non-labour income were obtained from a survey conducted 6 months later.  This 

latter survey was completed by only 5200 of the original sample.  

Even when the total sample sizes are the same in both data sources it is often the case 

that information obtained from one data source tends to be less prone to non response than 

that obtained from the second source. Possible examples include the use of linked employer-

employee data sets (for a recent review see for Hamermesh (1999)) or the combination of 

administrative and survey data. In the former some firm related data such as tenure, wages 

and firm size may be completely measured for all respondents using firm-payroll data, 

whereas individual level data such as education and health are only available from the 

individual surveys and thus more likely to suffer from missing data issues. In the second 

example administrative data is often used to provide accurate measures of outcome variables 

such as earnings or unemployment histories, along with some limited personal data (often 

age and gender), while survey data are used to identify more detailed demographic 

characteristics such as education, marital status and family size. Examples include recent 

evaluations of the long-run effect of training programmes (Couch (1992) and Dolton and 

O’Neill (2002)).  As with the linked employee-employer data non-response is more likely to 

occur with the survey, rather than administrative data, so that variables derived from this 

source may only be available for a subset of the entire sample. Researchers in this situation 

can either use the full sample restricted to the subset of variables obtained from the 

administrative data (as in Dolton and O’Neill (2002)) or use the full range of explanatory 

variables for the complete cases only. Neither approach is ideal. 

In macroeconomics econometricians working with published official time series 

statistics can find that while all variables are available annually, some are also available 

quarterly.  In some cases the recording of some variables may also have commenced well 

                                                                                                                                                                      
2 See for example the description of the U.S. Census 2000 at www.census.gov. 

http://www.census.gov/
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before that of others.  Both situations could give rise to the type of data structure we analyse 

in this paper. 

Furthermore, with our approach one can test the validity of the MAR assumption in 

cases where there is not deliberate double sampling. If it is true, coefficient estimates based 

on the complete data are consistent, but inefficient, while the estimates based on all data are 

consistent and efficient. If the two sets of estimates look very different the assumption is 

probably untrue. If the two sets of estimates are similar, with reduced standard errors for the 

estimates based on all data, the assumption is probably true.  More formally, a Hausman 

(1978) type test can be performed based on the explicit variance formulae we derive. It is 

worth noting that should the test reject the assumption, the conclusion is not necessarily that 

inference should be based on the complete observation estimates.  The implications for 

inference will depend greatly on which population is considered of real interest – that for 

which w is observable or the wider one.  In the latter case, which is probably the norm in 

economics, the complete data is unrepresentative of the relevant population, so that the 

complete data estimates may be useless.3 

In his 2006 presidential address to the American Finance Association, Campbell 

(2006) outlines the issues that arise when studying portfolio allocation decisions, noting in 

particular the data requirements for such analyses. In our application we use our estimator to 

examine the portfolio allocation decisions of Italian households using the Bank of Italy’s 

Survey of Household Income and Wealth (SHIW). The SHIW data have been used to study a 

range of economic issues including wage risk and intertemporal labour supply (Pistaferri 

(2003)), schooling returns (Brunello and Miniaci (1999) and intertemporal choice and 

consumption mobility (Jappelli and Pistaferri (2006)). A major advantage of these data for 

the study of portfolio allocation is that they contain a question permitting estimation of a 

quantitative measure of risk-aversion. However, the question was only asked of a randomly 

chosen half of the total sample. This example is one whereby the majority of missing data is 
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ignorable by design and where complete case analysis involves dispensing with over half of 

the original sample. Using our estimator on the full data set produces standard errors that are 

approximately half those obtained under the complete case restriction. As a result a number 

of coefficients that were imprecisely estimated previously become significant. Such dramatic 

changes are a clear illustration of the potential gains which may be achieved by using all the 

data in an efficient manner. 

 The structure of the paper is as follows.  Section 2 specifies the model and data 

structure we consider. Section 3 presents the efficient estimator for this model. Section 4 

obtains explicit formulae for the asymptotic variance of our estimator, while Section 5 

compares these results to the case where the dependent variable is continuous rather than a 

binary indicator. Section 6 presents some Monte Carlo simulations to assess the performance 

of our estimator. Section 7 presents the empirical application using the SHIW data and 

section 8 concludes. All proofs are provided in the Appendices. 

 

 

2. Model Specification 

 

We consider the following regression model : 

(1)     i
' '

i i x i wY x B w B ε= + +  

 

where x and w are (k x 1) and (l x 1) vectors of regressors  and εi ~N(0,1).4 In addition:  

(2)     '' '
i iw x C ui= +  

where C is a (k x l ) matrix of parameters, ' ~ (0, )iu N Σ  and ( iε , ) are multivariate normally 

distributed (conditional on x).

'
iu

5 

                                                                                                                                                                      
3 In situations where the data are not MAR we say that the missing data mechanism are nonignorable. 
In this case the missing data mechanism must be modelled along with the substantive model. Examples 
include the sample-selection models considered by Heckman (1976, 1979). 
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We observe x, w and Zi, where  

(3)     
1 if 0
0 if 0

i i

i i

Z Y
Z Y

= >
= ≤

 

The parameter vector to be estimated, θ , consists of the k components of xB , the l 

components of wB , the l*k elements of the matrix C and the ( )1
2
l l⎛ +⎜

⎝ ⎠
⎞
⎟  distinct elements of 

Σ. 

We consider situations where data is available on {xi,, wi, Zi} for i=1….r. This 

represents the complete observation sample. In addition there are a further (n-r) observations 

on which {xi,,Zi} alone are measured. Complete case analysis estimates θ  using only the 

observations i=1….r. In the next section we develop an efficient estimator for our data 

structure that makes use of the additional (n-r) observations. 

 

 

3. Efficient Estimator 

To derive our efficient estimator we use the fact that whenever θ
≈

 is a n  consistent for 

estimator for θ  then the ‘one-step’ estimator 

(4)    
^

( ) ( )nJ Lθ θ θ θ
θ

≈ ≈ ≈∂
= +

∂
  

where 

12

'( ) plim ( )J Lθ θ
θ θ

−
⎧ ⎫⎡ ⎤∂⎪ ⎪= −⎨ ⎬⎢ ⎥∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭

 

is asymptotically efficient (for example, Cox and Hinkley, 1974, p.308). 

                                                                                                                                                                      

'1yy w w

4 The choice of a unit variance matches the conventional assumption of standard probit analysis and 
implies that the variance of Y conditional on x only is given by B Bσ + Σ . =
5 Semiparametric approaches, such as Robins, Rotnitzky and Zhao (1994) and Robins. Hsieh and 
Newey (1995) relax the parametric assumptions concerning the covariate distribution. Although they 
do not consider the probit model explicitly, they show that their class of estimators contains an 
estimator whose asymptotic variance attains the semi-parametric variance bound for the models 
considered. Unfortunately this estimator may not be available for data analysis without further 
assumptions that are not required by our approach and even then their estimator may be difficult to 
implement.  
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Let  denote the maximum likelihood estimator obtainable 

from the r complete observations. 

' ' ' '( , , , ' )x wB B vec C vechθ =

xB

Σ

~
 and wB~ are the coefficients from a standard probit 

analysis with x and w as explanatory variables,  is C~ )~.,~,~( 21 lccc , where is the OLS 

coefficient vector for regression of  the jth w on the x variables and 

jc~

Σ~  is the estimator of Σ  

based on the OLS residuals. As  is the ML estimator it is θ~ r  consistent and therefore n  

consistent if we assume n proportional to r.  Using (4) it follows that: 

(5)    
^

( ) ( )nJ Lθ θ θ θ
θ
∂

= +
∂

 

is asymptotically efficient for θ . 

 The derivation of 
^
θ  requires the calculation of ( )J θ and ( )nL θ

θ
∂
∂

. For our data 

structure the log-likelihood function may be written 

(6)    , ,,n r wr z wL L L L −n r z= + +  

where the subscript r indicates complete observations and ( rn − ) indicates incomplete 

observations. In Appendix A we use this to derive the required components of the efficient 

estimator (5). We show that efficient estimators for xB  and wB  are given by6 : 

(7)   ( ) ( )AAVV
B
AC

B
AVBB AA

w
xw

x
xxx −+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
− ~~~~~ˆ 1

~
~~ θθ

 

and                                                                                                                                           

(8)   ( ) ( )AAVV
B
AV

B
ACBB AA

w
w

x
xwww −+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
− ~~~~~ˆ 1

~
~~

'

θθ

 

                                                           
6 Since this paper is primarily concerned with estimation of the coefficients of the probit regression of 
Z on x and w we focus on efficient estimators for xB  and wB . However, the overall estimator θ , as 

given by (5) also provides efficient estimators of C and ˆ Σ̂ of  C and Σ .  These are discussed briefly 
in the Appendix C. 
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where )(1
1

)(
' wx

yyww

wx CBB
BB

CBB
A +=

Σ+

+
=

σ
, A~  results from  by replacing A θ  byθ~ .   

and A  is the MLE of A  from (n-r) incomplete observations obtained from a simple probit of 

Zi on Xi.   and AV AV  denote their estimated variance matrices. Likewise  xV  and  denote 

the variance-covariance matrices of 

wV

xB~  and wB~ , respectively, evaluated at the MLE 

estimates and xwC  their estimated covariance matrix.  

Consistency of and xB̂ ˆ
wB  requires that AA −

~
be a consistent estimator of zero. A 

necessary condition for this is that the missing data for w are MAR. As noted earlier this is a 

common assumption in much of the work on missing data and in the next section we will 

show how to test validity of the assumption within our framework. Should the test imply that 

the MAR assumption is false, the implications for inference will depend greatly on which 

population is considered of real interest – that for which w is observable or the wider 

population including those who cannot or will not provide w.  In the former case, xB is 

estimable from the complete data, but no use can be made of the extra data.  In the latter 

case, the complete data may be unrepresentative of the wider population, so that the complete 

data estimate may be of little use. 

 

4. Asymptotic Variance: 

 

The asymptotic variances of ˆ
xB  and ˆ

wB  are derived in the Appendix B. To do this we note 

that since ˆ
xB  and ( ) ( AAVV

B
A )VB AA

wx
xx −+⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟⎟
⎠

⎞
− − ~~ 1

~Cxw+
B
A

⎜⎜
⎝

⎛
∂
∂

  differ only in terms 

of  they have the same asymptotic variance. It can then be shown that: )1( −nOp

 

(9)  ( )
'

1ˆ( )x x x xw x xwA A
x w x w

A A AVar B V V C V V V C
B B B B

−⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= − + + +⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

A ⎤
⎥
⎥⎦
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and the estimated variance is obtained by replacing the Vs  by sV~ , xwC by xwC   and the 

derivates by their values evaluated at θ . 

Similarly, the variance of may be shown to be wB̂

 

(10) ( )
'

1ˆ( ) ' 'w w xw w xw wA A
x w x w

A A A AVar B V C V V V C V
B B B B

−⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= − + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 

 

and the covariance of and to be xB̂ wB̂

 

(11) ( )
'

1ˆ ˆ( , ) 'x w xw x xw xw wA A
x w x

A A ACov B B C V C V V C V
B B B B

−⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂
= − + + +⎢ ⎥ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ w

A ⎤
⎥
⎥⎦

. 

 

 

5. The Case of Observed Y. 

 

Before examining our estimator in more detail we first briefly discuss its relationship to some 

earlier estimators developed in the literature. The estimators given in (7) and (8) followed 

from the structure of the likelihood given by equation (6). Since this structure is not unique to 

probit regression similar estimators exist for other models.  An obvious case is that of 

observed Y with the same assumptions about the relationships between Y, the w variables and 

the x variables.  In Appendix D we show that for this model 

(12)   ( ) ( )AAVVVBB AAA
yy

wyy
xx −+−=

− ~~~
~

~~ˆ 1
~~

.

σ
σ

    

and 

(13)      ww BB ~ˆ = . 
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where xB~  and wB~  are now the usual OLS estimators, A~  and A  are OLS estimators of 

coefficients of Y on just the x variables for the r and (n– r) observations respectively, wyy.σ  is 

simply estimated from the error mean square of the regression of Y on the x and  w variables 

for the r complete observations, and yyσ  is estimated from the error mean square of 

regression of Y on x alone for the full n observations. 

 The failure to improve on wB~ is intuitively plausible since the w variables are only 

measured on the r complete observations, while the x variables are measured on all n.  While 

in the probit case the efficient estimator given in (8) is not identical to wB~ , we should not 

expect its variance to be much different from that of wB~ .     

Introducing Â  as the efficient estimator of A over all n observations, obtained by 

weighting A~  and A  inversely by their variances, it is easily shown that 

(14)    ( )AABB
yy

wyy
xx −−=

~
~

~~ˆ .

σ
σ

, 

with asymptotic variance  

(15)    [ ]1'1'
2

. )()( −− −+ nnrr
yy

wyy
x XXXXV

σ
σ

 , 

where   is the ( )  matrix of x values for the complete observations and  is the 

( )  matrix of all x values.  This is the estimator obtained in Conniffe (1983), which was 

shown to also have desirable finite sample properties as well as being asymptotically 

efficient.  In particular,  is unbiased and an explicit exact finite sample variance is 

available. The earlier results were not derived from the likelihood function, as in this paper, 

but from the device, going back at least to Rao (1967), of modifying a consistent estimator 

rX kr × nX

kn×

θ

xB̂

~
through 

(16)     SΩ+=θθ ~ˆ  
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where  is a statistic correlated with S θ  and with asymptotic expectation zero.  For any 

particular  the  with minimum variance is obtained by taking S θ̂ Ω  equal to minus the 

covariance of θ~ and by the inverse of the variance of .   Choosing S S AAS ˆ~
−=   leads to 

the estimator .  The device has been reapplied in recent papers, for example, by Chen and 

Chen (2002) in a partially semi-parametric context. 

xB̂

 

 

6. Simulations. 

Before studying the determinants of portfolio allocation using the Bank of Italy’s SHIW, we 

assess the performance of our estimator using Monte Carlo simulations. The model used for 

the simulations is   

(17)     iY x ' '
i i x i wB w B ε= + +  

 

where x and w are both scalar random variables and εi ~N(0,1). For the simulation we assume 

that . In addition:  ' ~ (0,1)ix N

 

(18)     '' '
i iw x C ui= +  

where ' ~ (0, )iu N σ . 

The true parameter vector 'θ , is therefore a (1x4) vector consisting of  ( xB , wB , C, σ). For 

the simulation we set 'θ =(1,1,1,1). 

We observe x, w and Z, where  

(19)     
1 if 0
0 if 0

i i

i i

Z Y
Z Y

= >
= ≤
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We consider situations where data is available on {xi,,wi, Zi} for i=1….r. This represents the 

complete observation sample. In addition there are a further (n-r) observations on which 

{xi,,Zi} alone are measured. The simulations ensure that the data are missing completely at 

random. We carry out the simulations for three different choices of n (500, 1000 and 6000) 

and also consider vary the proportion of missing data across the samples. In particular for 

each n we consider values of (n r
n
− )  equal to .7, .5, .25 and .1.  

 The results of the simulations, based on 1000 replications, are given in Table 1.7 The 

first four columns correspond to the point estimates and variances from the complete case 

analysis. The second four columns present the corresponding results using our efficient 

estimator. The results for the point estimates are as expected. There appears to be a small bias 

in the parameters that goes to zero as r→∞.8 As expected there are no significant differences 

between the estimates across the two estimators and the true parameter vector is not rejected 

in any of the nine simulations.  

 However, when we turn to the estimated variances we see significant improvements 

in precision when the efficient estimator used. The results are consistent across sample sizes. 

In keeping with the findings from the linear regression model there is very little difference in 

the estimated variance of  wB . The failure to improve on wB~ is intuitively plausible since the 

w variables are only measured on the r complete observations. However, a comparison of the 

estimated variances of ˆ
xB  and xB  show significant improvements in precision. As expected 

the biggest reductions in variance arise when the proportion of missing data is highest. In the 

worst case scenario considered, when 70% of the data are missing, we see an approximate 

sixty percent reduction in the variance. Even in cases with more moderate degrees of missing 

data the reductions in the estimated variance are non-trivial. The reduction in variance is of 

                                                           
7 The estimates for our new estimator are easily obtained form a new user-written Stata package 
provided by the authors. This program, called probitmiss, along with a help file is available for 
download at  http://economics.nuim.ie/staff/oneill/probitmissprograms.shtml. 
8 This is to be expected as the standard complete case Probit estimator is biased, as are maximum 
likelihood estimators in general. 

http://economics.nuim.ie/staff/oneill/probitmissprograms.shtml
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the order of ten to twenty percent when we consider missing data in the range of ten to twenty 

five percent of the initial sample.9 

 Table 1 also allows us to compare the performance of our estimator to a popular 

multiple imputation technique for handling missing data. In columns 5-8, underneath the 

estimates from our efficient estimator, we present Monte Carlo results using the multiple 

imputation package provided in Stata (see Royston (2004)). This package imputes values for 

missing data by drawing imputations at random from the posterior distribution of the missing 

values of w, conditional on the observed values and the variables in {Z,x}. The results 

reported in Table 1 suggest that estimates and standard errors produced by the multiple 

implementation package are consistent with our efficient estimator when the proportion of 

missing data is small. However, the performance of the multiple imputation procedure 

becomes less satisfactory as the proportion of missing data rises. While our estimator 

remains effectively unbiased as the proportion of missing data increases, the estimator based 

on multiple imputation does not, with the bias increasing as the proportion of missing data 

increases.10 

 

 

7. Empirical Application to Portfolio Allocation. 

Campbell (2006) presents an overview of recent theoretical and empirical developments in 

the area of household financial decision making, noting that empirical studies in this field 

often encounter difficulties obtaining the high-quality data necessary. In this section we apply 

the results developed in the previous sections to look at the portfolio allocation decisions of 

Italian households using the Bank of Italy’s Survey of Household Income and Wealth 

                                                           
9 Other simulations, not presented, suggest that the improvements in efficiency increase as the 
correlation between x and w falls and as wB  decreases. These findings are intuitive and consistent with 
the results for the linear regression model (Conniffe (1983)).  
10 Paul et al (2008) report biases of similar magnitude to us when applying multiple imputation 
techniques to a logistic model. It is interesting to note that in our simulation the bias in the multiple 
imputation is only evident with the binary dependent variable. When Yi is assumed to be fully 
observed, resulting in the standard linear regression model, the multiple imputation approach appears to 
be unbiased even when the degree of missing data is large.  
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(SHIW). The SHIW has been used recently to study issues such as the schooling returns in 

Italy (Brunello and Miniaci 1999), earnings and employment risk (Guiso et al 2002), wage 

risk and intertemporal labour supply (Pistaferri 2003) and intertemporal choice and 

consumption mobility (Jappelli and Pistaferri 2006). In the next section we discuss the 

strengths of the SHIW for studying portfolio allocation. We outline the problems of missing 

data that arise in this application and use our proposed estimator to examine the decision to 

hold risky assets. The application is used to illustrate the efficiency gains arising from our 

estimator relative to the traditional complete case analysis. 

 

7.1 Bank of Italy’s Survey of Household Income and Wealth 

Since 1962, the Bank of Italy has conducted surveys on household budgets, which allows 

researchers to examine economic behavior at the micro level. The primary aim of the survey 

is to collect detailed information on income and savings of households. Campbell (2006) 

argues that an ideal data set for studying household financial decision making should meet 

five criteria; it should cover a representative sample of the entire population, should contain 

measures of total wealth, should identify individual assets so that one could measure 

household diversification, should be reported with a high-level of accuracy and should follow 

households over time. The SHIW performs well on each of these measures, being a repeated 

nationally representative sample of approximately 8000 Italian households, with finely 

disaggregated data on assets and wealth that are measured with reasonable accuracy.11   

In addition to traditional measurement problems, previous studies of portfolio 

allocation have been limited by the extent to which they can measure risk-aversion. An 

important feature of the SHIW in this respect is that the later surveys contained questions that 

attempt to directly measure individual levels of risk-aversion. Both the 1995 and 2000 

                                                                                                                                                                      
 
11 The main purpose of this section example is to illustrate the efficiency gains arising from our new 
estimator. Other potential biases such as that from measurement error are not addressed directly. 
Biancotti et al (2008) provide a detailed analysis of measurement error issues in the SHIW.  While 
there is variation in the reliability index across disaggregated assets overall the SHIW performed well. 
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surveys asked individuals to value a hypothetical lottery so as to measure their degree of risk 

aversion. The wording of the question varied slightly between surveys, so for clarity we focus 

only on the 2000 survey. In that year the lottery question was as follows: 

 

“You are offered the opportunity of buying shares which, tomorrow, with equal probability, 

will be worth either 10 million or nothing. How much would you be prepared to pay 

(maximum amount) to buy these shares?” 

 

Thus individuals who pay P lire for this lottery have a 50% chance of winning (10m) 

and a 50% chance of winning zero.  The expected value of this lottery net of the purchase 

price is .5*10m-P. Clearly individuals who are risk neutral will pay anything up to 5m to play 

this lottery, since the expected value of the winnings will still be positive. A risk-averse 

decision taker will pay less than 5m and a risk-lover would be willing to pay more than 5m 

lire. Using a Taylor series approximation of a utility function we obtain the following 

approximate expression for the Arrow-Pratt measure of absolute risk aversion12: 

 

(17)    2 2
(5 )

( )
10[ .5* 5* ]

2 2

i
i

i
i

P
R y

P P

−
=

+ −

 

For individuals who are risk neutral Pi=5, so that ( )iR y =0. 

However, there are two data problems associated with the lottery question in the 

SHIW. Firstly in 2000 it was only asked of a random sample of one half of the survey. In 

terms of the structure of our missing data problem, this is an ideal scenario in that by 

construction the data are missing at random. However on top of this we also have a problem 

of non-response by those scheduled to answer the question. In total the inclusion of the risk-

aversion question reduces the sample size from 6779 to 1029. A traditional approach to 

                                                                                                                                                                      
Reliability indices for the disaggregated income and wealth measured were typically over 70%, while 
the index for aggregate measures of net disposable income and net wealth was over 80%. 
12 See also Hartog et al (2002). 
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estimating this model would be to focus on the complete data. However in our application this 

involves throwing away over 5000 observations. The estimator proposed in our paper 

provides a way of incorporating these additional observations to improve the precision of the 

traditional estimator.  

Table 2 presents descriptive statistics for the main variables used in our analysis. The 

dependent variable in our analysis is a binary variable indicating whether or not the household 

held risky assets as part of their savings portfolio at the end of 2000.  The sample is restricted 

to those who reported positive savings as of the end of 2000. This leaves us with a base 

sample size of 6779. As noted earlier restricting ourselves to households with a valid measure 

of risk-aversion reduces our sample to 1029. Column one reports summary statistics for the 

base sample, while column 2 reported the summary figures for the subsample for which we 

can measure risk-aversion. Looking at the base sample we see that 23.5% of the sample report 

holding risky assets as part of their savings portfolio.13 The average age of head of household 

was 54, while the proportion with college education was 10.3%. 31.5% of the household 

heads were women and 71% were married. The results for the subsample are given in column 

2. The summary measures are broadly consistent with the full-sample, though they are some 

differences on the region variable. We will return to this issue when testing the validity of our 

missing at random assumption. 

 

7.2 Estimation Results 

Table 3 reports the results from our estimated model. The results for the complete case 

analysis are presented in the first two columns while the estimates based on the efficient 

estimator are given in the final two columns. Looking first at the results for the complete case 

analysis we see that as expected the greater the degree of risk-aversion the less likely it is that 

a household will hold risky assets in their portfolio. In addition older individuals and those 

                                                           
13 Risky assets are defined as bonds, shares of Italian mutual funds or equity. Non risky assets include 
deposit accounts and government securities. 
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with a college education are also more likely to hold risky assets.14 Those located in the south 

or the islands are less likely to hold risky assets.15 Of the remaining coefficients neither the 

gender, marital status or the North-West or Centre region variables are precisely estimated for 

the complete sample case.  

Columns three and four report the results from the efficient estimator developed in 

this paper. The fact that the point estimates from the efficient estimator are comparable to 

those from the complete case analysis supports our assumption of missing at random. This 

assumption can be tested through a Hausman (1978) type test. Under the assumption of MAR 

 is the efficient estimator, with variance given by (9) and xB̂ xB~  is a consistent estimator, 

with variance . Since the asymptotic variance of the difference between an efficient 

estimator and another consistent one is the difference of the variances, then: 
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is asymptotically with k degrees of freedom. Applying this test to our application 

leads to a  statistic 11.39, with an associated p-value of .25, which supports the 

assumptions underlying our estimator for this application.  

2χ

2χ

Having tested the underlying assumptions of our estimator we can now look at the 

efficiency gains achieved from our approach. A comparison of the standard errors across the 

two estimators shows substantial efficiency gains from the new estimator. For almost all the 

parameters the standard errors from the efficient estimator are half those of the complete case 

analysis. The exception is the coefficient on risk-aversion for which the standard error is 

virtually the same. This is to be expected since the extra data used in the efficient estimator 

contains no independent information on risk-aversion. However, for the other variables the 

standard errors have been reduced significantly. The result is that explanatory variables such 

                                                           
14 These results are consistent with previous studies of portfolio allocation (e.g Guiso et al (1996)  and 
Rosen and Wu (2004)) though neither of those studies directly controlled for individual risk-aversion. 
15 The omitted region refers to those living in the North-East. 
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as marital status, the north-west dummy and the central regional dummy, which were 

insignificant in the complete case analysis, are now precisely estimated with coefficients that 

are similar to those from the complete case analysis. 

 

8. Conclusion 

In this paper we develop an asymptotically efficient estimator for handling missing data on 

explanatory variables in a probit choice model, that is easily implemented using standard 

software packages such as Stata. We provide closed form expressions for both the estimator 

and its asymptotic variance and relate these to previous results obtained for the case where the 

dependent variable is continuous rather than binary. We also carry out simulations which 

illustrate that our estimator outperforms popular alternative approaches. 

 In our application we use our estimator to study the portfolio allocation decision of 

Italian households using the Bank of Italy’s SHIW data. In this situation complete case 

analysis results in over half of the data being discarded. A Hausman test is used to check the 

validity of the ignorable data assumption underlying our estimator, while use of the efficient 

estimator leads to standard errors that are, in most cases, half the size of those obtained using 

only the complete cases. As a result a number of coefficients that were imprecisely estimated 

previously are now significant.  

The substantial improvement in precision arising from our estimator, the transparency 

provided by the closed form expressions for the estimator and its variance and the ease with 

which the estimator can be implemented provides an attractive new option for binary choice 

analysis with missing data.  
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Appendix A:  Efficient estimators of xB and wB  

As noted in the main text our data structure implies that the log-likelihood function over the 

entire sample may be written as nL

 (A1)     ,,n r wr z wL L L L − ,n r z= + +                                                                                          

where the subscript r indicates complete observations and ( rn − ) indicates incomplete 

observations. 

Under our normality assumptions the first component of the likelihood based on the 

complete observations is   

              ,r z wL =  , { }∑ Φ−−+Φ
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which is the likelihood function for a seemingly unrelated regressions model with the same  

explanatory variables in each equation.  The third is    
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The k element vector A is the unconditional (or conditionally on x alone) mean of the 

underlying unobserved Y divided by its unconditional standard error.  The vector of all 

parameters, θ , is the transpose of  ' ' '[ , , ' , 'x w ]B B vec C vechθ = Σ , where denotes the half-

vectorization operator that transforms a symmetric matrix into a vector, omitting the 

vech
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duplicated elements above the leading diagonal (see for example Seber (2008)).  In total, 

there are 2/)1( ++++= llkllkq  parameters. 

Derivation of the efficient estimator requires the calculation of ( )J θ and ( )nL θ
θ
∂
∂

 

evaluated at , the maximum likelihood estimator of ' ' ' '( , , ,x wB B vec C vechθ = ' )Σ θ  using only 

the r complete observations. Since wrwzrrL LL ,, +=  the xB~  and wB~ are independent of C~  

and Σ~ .   
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where A~  results from  by replacing A θ  byθ~ . It is worth emphasising that A~   is not the 

same as the estimates from a standard probit regression on the x variables for the r complete 

observations, denoted bys 
*A .  Chesher (1984) compared A~ with 

*A  in the context of 

estimating  a probit equation on x variables jointly with a linear regression of w on the same 

variables in a seemingly unrelated regression system, assuming bivariate normality of the 

unobserved Y and w. He concluded 
*A  could be very inefficient and was supported by  

Ronning and Kukuk (1996).    

Denoting the MLE of  from by A )(AL rn− A  

                               )1()~(
'

2

~
p

A

rn

A

rn

A

rn OAA
AA

L
A

L
A

L
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
+⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ −−− . 

The derivative of  is zero at rnL − A  and  

A
A

rn V
AA

L
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂∂

∂
−

−

−

12

'
,  



 23

which estimates AV , the variance of A , and satisfies =AV )( 2
3

−
+ nOV pA .   So 
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Using the matrix inversion formula 
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where  is the variance matrix of 1)'( −⊗Σ XX Cvec ~
, the  vector of coefficients from 

OLS regressions of w variables on x and H is the variance matrix of the element 

vector of OLS estimates of the lower triangular components of 

*k l

2/)1( +ll

Σ .  The elements of H are of 

the form * *( ij i j ij* *ji
r) /σ σ σ+ σ  as is shown in standard textbooks (e.g. Kendall and Stuart, vol. 

3, pg 254).   

θ~
~V , the estimator of , is obtained by replacing , and  in (A6) by θ~V xV wV xwC

xV~ , wV~ and xwC~ respectively, where these are produced by the standard probit regression for 
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the r complete  observations, and and Σ H by Σ~ and H~ , where the ijσ are replaced by their 

estimators based on  OLS residuals.  From the structure of (A6) it is clear that 
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These are the expressions that appear in equations (7) and (8) of the main text.  

For completeness we note that since 

)(1

yyσ1

(
w

x CB
B

CBB
A

Σ+
=

)

w

w =
'
wB

+
xB +  

it is clear that 

kI
yyσ

1
=

xB
A

∂
∂

 

and                                                                                                                                               

'1'1

yy

'A
2

1'1 C
B

C
B
A

yyw

yy

yyyyw

Σ−=
∂

ABw

∂
−=

∂
∂

σσ

σ
. 

σσ

So 

(A9)  
yyxB

A
σθ
~
1

~
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

kI  and   '~~
~'~

~
1

~
ABC w

yyyy

Σ−=⎟⎟
⎠

⎞

⎝

⎛
∂
∂

σσθ

~1
B
A

w
⎜⎜ ,  

where wwyy BB ~~~1~ ' Σ+=σ .   It may be worth noting that wBΣ  is the vector of ‘covariances’ of 

the unobserved Y and the w variables (conditionally on the x variables). 
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Appendix B:  Variances of and  xB̂ wB̂

To obtain the variance of as given by (A7)  note that         xB̂
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and remembering that xB~ and A  are independent, the (asymptotic) variance of  is xB̂

( ) ( )[ ] ( ) ( )[ ]{ } wxAAxAAx BBAAVVBAAVVBE −−+Λ−−+Λ− −− '1
~

1
~

~~~~
 

     ( ) ( ) ( ) '1
~

1
~

'1
~ )~,~cov()~,~cov( Λ+Λ++Λ−Λ+−= −−−

AAxAAAAxx VVBAVVVVABV  

 

having used the fact that the variance of AA −
~

 is AA VV ~+ .  Since 

 )~()~(~
ww

w
xx

x

BB
B
ABB

B
AAA −

∂
∂

+−
∂
∂

+= + (terms independent of xB~ ) +   )( 1−nOp

the covariance of xB~  and A~  is . Therefore the variance of  is  Λ xB̂

( ) 1 'ˆ( )x x A AVar B V V V
−

= − Λ + Λ   

 (A10)  = ( )
'

1
~ ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

− −

w
xw

x
xAA

w
xw

x
xx B

AC
B
AVVV

B
AC

B
AVV       



 28

This is equation (9) in the main text. 

Similarly, the variance of may be shown to be wB̂
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Appendix C: Estimators of C and Σ  

This paper is of primarily concerned with estimation of the of the coefficients of the 

probit regression of  Z on x and w.  However, the overall estimator 
^
θ , as given by (A5), also 

provides efficient estimators of C and ˆ Σ̂  of and C Σ  Conniffe(1997) showed how 

estimation of a linear regression jointly with a probit employing the same explanatory 

variables, but with extra observations on the binary variable, leads to an improved estimator 

of the linear model.  The estimators from (A5) are the generalisation of this estimator to a 

set of linear equations – the l regressions of the w variables on the x variables.  As regards 

Ĉ

Σ̂ , 

we are not interested in the components of Σ  per se, except to the extent that some estimate is  

required to implement the asymptotically efficient estimators of B and and their 

variances. Appendices A and B show that 

x  wB

Σ~  suffices for that.   

 

Appendix D: The case of observed Y 

When Y is observed the components of the likelihood are   
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xB~  and wB~  are now the usual OLS estimators and ,  and are the corresponding 

variances and covariance, while

xV wV xwC

A~  and A  are OLS estimators of coefficients of Y on just the 

x variables for the r and (n– r) observations respectively.  Then it is easily shown that (A9) 

become  
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where wyy.σ  is simply estimated from the error mean square of regression of Y on  the x and  

w variables for the r complete observations, and  0~~~ ' =+ CVC wxw  then we obtain: 

           ( ) ( AAVVVBB AAA
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wyy
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   and    ww BB ~ˆ = . 

 

These are the expressions given in (12) and (13) of the main text. 
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Table 1: 
Monte Carlo Study: Comparison of the Efficient Estimator with the Complete Case 

Probit Estimator and Multiple Imputation approaches 
 
 

 
N=500 Complete Case Analysis  Efficient Estimator 
%missing 

wB  xB  wV  xV  ˆ
wB  xB̂  ˆ( )wVar B  ˆ( )xVar B  ˆ( )x

x

Var B
V

 

 
 
10% 
Imputation 

 
1.019 

 
1.016 

 
.015 

 
.023 

 
1.02 
.99 

 
1.006 
1.008 

 
.015 
.016 

 
.021 
.021 

 
.93 
 

25% 
Imputation 

1.026 1.020 .018 .028 1.026 
.95 

1.007 
.98 

.018 

.019 
.022 
.022 

.81 
 

50% 
Imputation 

1.038 
 

1.032 
 

.028 
 

.042 
 

1.04 
.89 

1.011 
.96 

.028 

.028 
.025 
.024 

.60 
 

70% 
Imputation 

1.072 1.049 .051 .076 1.075 
.85 

1.016 
.94 

.051 

.038 
.033 
.027 

.43 
 

 
 
N=1000 
 
10% 
Imputation 

 
1.013 

 
1.01 

 
.007 

 
.011 

 
1.013 
.98 

 
1.006 
.99 

 
.007 
.008 

 
.010 
.01 

 
.93 
 

25% 
Imputation 

1.015 1.011 .0087 .0133 1.015 
.94 

1.006 
.98 

.0087 

.009 
.0108 
.01 

.80 
 

50% 
Imputation 

1.022 1.014 .013 .0203 1.022 
.87 

1.006 
.95 

.013 

.013 
.012 
.011 

.60 
 

70% 
Imputation 

1.032 1.026 .023 .035 1.03 
.84 

1.01 
.94 

.0228 

.019 
.0145 
.013 

.41 

 
 
N=6000 
 
10% 
Imputation 

 
1.002 

 
1.003 

 
.0012 

 
.0018 

 
1.002 
.97 

 
1.002 
.99 

 
.0012 
.0012 

 
.0017 
.0017 

 
.92 
 

25% 
Imputation 

1.003 1.003 .0014 .0022 1.003 
.93 

1.002 
.96 

.0014 

.0015 
.00175 
.0017 

.81 
 

50% 
Imputation 

1.004 1.004 .0021 .0033 1.004 
.87 

1.002 
.94 

.0021 

.002 
.00195 
.0018 

.60  
 

70% 
Imputation 

1.007 1.003 .0035 .0055 1.007 
.83 

1.002 
.92 

.0035 

.003 
.0023 
.0021 

.42 
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Table 2 
Summary Statistics 

 
Variable Name Complete Sample Subsample 
   
Risky assets 23.5% 30.2% 
Age 54 51.2 
College Education  10.3% 11.6% 
Gender 31.5% 29.35% 
Married 71.3% 74% 
Region 1 – North-East 27.2% 28% 
Region 2 – North-West 22.5% 26.9% 
Region 3 – Centre 22.1% 15.7% 
Region 4 – South 18.6% 20.9% 
Region 5 – Islands 9.6% 8.45% 
Risk Aversion  .1778 
   
Sample Size 6779 1029 
 
 
 

Table 3 
Determinants of Portfolio Allocation among Italian Households. 

Dependent Variable is a Binary Variable taking the value 1 if Respondents are 
Identified as having Held Risky Assets at the end of 2000. 

 
 

Independent 
Variable 

Coefficient Standard Error Coefficient Standard Error 

 Complete Case analysis Efficient Estimator 
     

Constant -1.24 .55 -.96 .27 
Age .06 .02 .04 .01 

Age-Squared -.0006 .0002 -.0004 .0001 
College .65 .13 .62 .06 
Gender .01 .10 -.09 .05 

Marital Status .18 .11 .21 .05 
North-West .15 .11 .18 .05 

Centre -.22 .13 -.21 .05 
South  -.50 .13 -.72 .06 
Islands -.98 .21 -.70 .08 

Risk-Aversion -4.08 .77 -3.9 .76 
     

 


