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Abstract 

In this paper we study the performance of the GMM estimator in the context of the 
covariance structure of earnings. Using analytical and Monte Carlo techniques we 
examine the sensitivity of parameter identification to key features such as panel length, 
sample size, the degree of persistence of earnings shocks and the evolution of 
inequality over time. We show that the interaction of transitory persistence with the 
time pattern of inequality determines identification in these models and offer some 
practical recommendations that follow from our findings. 
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1. Introduction 

In recent years there has been a rapid growth in the number of studies that have used 

the Generalised Method of Moments (GMM) estimator to estimate the covariance 

structure of earnings (e.g. Moffitt and Gottschalk (1995, 2002, 2008), Dickens (2000), 

Haider (2001), Ramos (2002), Baker and Solon (2003), Capellari (2004), Gustavsson 

(2004), Daly and Valetta (2007) and Kalwij and Alessie (2007)). 1 In these models, 

earnings are written as the sum of permanent and transitory components. The resulting 

parameter estimates are then used to construct measures of permanent and transitory 

inequality and to trace their evolution over time. Distinguishing between these two 

components is important because they have different policy implications; moreover 

the distinction can provide insight into the functioning of the labour market. 

The GMM estimator uses panel data to estimate these models by matching the 

sample variances and covariances of earnings to their population counterparts. The 

model is identified from the long covariances. In these latter moments, the 

contribution of the transitory shock is negligible, which in turn allows researchers to 

recover the parameters associated with the permanent component. However long 

panels are not always available to researchers and as a result a number of recent 

studies, for example Ramos (2003), Doris et al. (2008), Cervini and Ramos (2008) 

and Sologon and O’Donoghue (2009), have been constrained to use relatively short 

panels, with eight or nine years of data.  It is unclear whether panel lengths of this 

order are sufficient to identify these models. Although the performance of the GMM 

estimator has been evaluated elsewhere (e.g. Tauchen (1986), Hansen et al. (1996), 

Altonji and Segal (1996), Clark (1996), Stock and Wright (2000) and Pozzi (2003)), 

                                                 
1 Dearden et al. (2006), Shin and Solon (2008) and Bonhomme and Robin (2008) also estimate the 
covariance structure of earnings, but do not use GMM. 
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as yet there has been no detailed study of the estimator for the type of earnings 

covariance models or the data structures often found in the empirical literature. Using 

both analytical and Monte Carlo techniques we consider identification of these models 

and discuss the consequences for estimation and inference.  

Section 2 reviews the conditions needed for identification using the GMM 

estimator and Section 3 presents the earnings model considered in this paper.  Section 

4 examines the sensitivity of parameter identification to key features such as panel 

length, number of observations, the degree of persistence of earnings shocks and the 

trends in inequality. We discuss the circumstances under which traditional 

asymptotics provide a good approximation to the distribution of GMM estimators in 

these models. We show that identification depends crucially on the evolution of 

inequality over time and offer some practical recommendations that follow from our 

findings. 

 

2. Identification Using GMM 

The GMM approach to parameter estimation is now well established in the 

econometric literature, having been introduced by Hansen (1982). Hall (2005) 

provides a comprehensive discussion of the approach in a time-series context, while 

Cameron and Trivedi (2005) discuss the procedure in a microeconometric setting. 

GMM is based on the analogy principle whereby population moment conditions are 

replaced by their sample analogues. This in turn provides a system of equations which 

form the basis for the derivation of the Method of Moments estimator. Formally, 

suppose we have a  vector m and a 1kx 1px  parameter vector θ such that for a given 

value 0  and data Y 

 0[ ( ; )] 0E m Y   ,  (1) 
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The GMM approach replaces the population expectation with the sample moments 
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and chooses the value of θ that makes ( )m   equal to or ‘close to’ zero. Formally the 

GMM estimator chooses the value of θ so as to minimise the criterion function 

 ( ) ' ( )nm W m  , (3) 

where Wn is a positive semi-definite matrix that does not depend on  . The GMM 

estimator will identify the model if the probability limit of the GMM criterion 

function is uniquely minimised at the true parameter vector, 0 . If a model is not 

identified, there exist at least two distinct data-generating processes (DGPs), 

characterised by different parameter vectors θ, which cannot be distinguished by any 

function of the data, even with infinitely large samples. It has been shown that GMM 

identifies 0 , provided that for all 0  , then [ ( ; )]E m Y   is not in the null-space of 

 (Newey and McFadden, 1994). When W is positive-definite, this reduces 

to the more familiar moment condition: 

plimW nW

 0 0[ ( ; )] 0 and [ ( ; )] 0 E m Y E m Y        

A necessary condition for identification by the GMM estimator is that the 

number of moment conditions is at least as great as the number of parameters (the 

order condition). In addition, the rank condition requires that the information provided 

by the moment conditions must differ; that is, as the p components of θ vary in the 

neighbourhood of 0 , the k components of ( ; )m Y   vary in p independent directions 

(see for example Hall, 2005, Chapter 3). We will use this condition to examine the 

identification of our models later in the paper. 
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Altonji and Segal (1996) and Clark (1996) consider the appropriate weighting 

matrix in relatively straightforward covariance models, and show that the matrix that 

is optimal in large samples can lead to biased results in small samples and that the use 

of the identity matrix is preferable. This approach has therefore become common 

practice when estimating the covariance structure of earnings. In order to ensure that 

our results are comparable to the applied literature, we also use the identity matrix in 

our analysis. Under suitable regularity and identification conditions, it can then be 

shown that the limiting distribution of our estimator  is as follows:  ĜMM

     1

0 0 0 0 0 0 0 00  
 

^ -' ' '
GMMN N , G G G S Gd- 

1-
G G    (4) 
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In practice, G0 and S0 are estimated by evaluating the analytical expressions at the 

GMM estimate, . In the remainder of the paper we refer to the standard errors 

derived from (4) as the analytical standard errors. 

ĜMM

In recent times there has been a growing interest in problems of weak 

identification in econometric models.2 Weak identification occurs when the moment 

condition is not zero but still very small at parameter values other than 0 . This gives 

rise to objective functions with ridges or near flat spots in the region of the true 

parameter vector, 0 . Stock and Wright (2000) consider the GMM estimator and 

show that the asymptotic theory devised for identified models does not provide a good 

approximation to the finite sample distribution of the parameters in a weakly 

identified model, even for very large but finite sample sizes. They also show that the 

GMM estimator for a weakly identified parameter is inconsistent and the analytical 

                                                 
2 For a review see Stock et al (2002).  
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standard errors do not converge to the true standard errors. Moreover, they 

demonstrate that while the strongly identified parameters are consistently estimated, 

the normal distribution is unlikely to be a good approximation to the finite sample 

distribution for these parameters. Thus, the presence of some weakly identified 

parameters can lead to incorrect inferences on well-identified parameters, even in very 

large samples. They illustrate their findings using both a simultaneous equation model 

and a consumption based asset pricing model. In our paper, we consider identification 

in a different context, one based on the use of panel data to estimate the covariance 

structure of earnings.  

 

3. The GMM Approach to Estimating Earnings Covariance Structures 

When considering the covariance structure of earnings, the standard approach is to 

write earnings as the sum of a permanent component, due to fixed characteristics such 

as the level of education, and a transitory one, reflecting temporary shocks that affect 

the individual or the labour market. The objective is to measure the separate roles 

played by the permanent and transitory shocks in determining inequality and to 

examine how this may have changed over time. Formally, earnings, ity , are written as 

 it t i t ity p v    (5a) 

where i  (the permanent component) and  (the transitory component) are random 

variables with means zero and variances 

itv

2
  and 2

vt  respectively; pt and λt are ‘factor 

loadings’ that allow these variances to change over time in a way that is common 

across individuals. The inclusion of these factor loadings was an important innovation 

in models of earnings dynamics and allowed for the existence of structural shifts by 
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calendar time in the earnings process (Moffitt and Gottschalk (1995)). To capture 

persistence in the transitory shock, we model  as an AR(1) process so that itv

1 .it it itv v  (5b)  

Other, more elaborate specifications are often used, such as modelling the transitory 

shock using an ARMA rather than an AR process, allowing for individual 

heterogeneity and/or a random walk element in the permanent component, including 

cohort effects in the permanent and/or transitory components and allowing the initial 

variances ( 2
1v ) to vary by age cohort. However, the relatively simple model in (5a) 

and (5b) captures most of the important features of earnings dynamics, namely time-

varying parameters and serial correlation of the transitory shocks. Furthermore, and as 

discussed in more detail later, the key issues that we raise in this paper turn out to be 

central to the identification of more elaborate models as well, so that the lessons 

learned from our analysis carry over to the more complicated models . 

The model is estimated by GMM, whereby sample moments are matched to 

population moments. In this specification, the true variance-covariance matrix has 

diagonal elements:  

2 2 2
1 1 1   vp 

2 2
1    , for 1t  
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These moments constitute the elements of the vector ( ; )m Y   referred to in Section 2, 

where the parameter vector to be estimated is given by 

2 2 2
1 1 1{ , , , , ... , ... }        v Tp p T . Identification requires a normalization of the 

factor loadings; in keeping with the literature, we set λ1 and p1 equal to one. 

 

4. Results 

 

4a. Analytical Results 

In this section we examine the identification issues that arise in GMM estimation of 

the parameters of the DGP given in (5a) and (5b). The identification problems 

associated with this model are most easily understood by considering the matrix 

0

'

 

  

m
E






 . Using a first order Taylor-series expansion, we can deduce that a 

sufficient condition for local identification is that this matrix is of full column rank. If 

this condition is satisfied then θ0 is the unique solution to equation (1), within some 

neighbourhood of θ0.  

Table 1a provides the typical elements of this matrix for our model, where we 

initially consider a simplified version without factor loadings and a panel length of 8. 

The key columns to consider in this case are column (2), the derivative with respect to 

2
  and column (4), the derivative with respect to 2

1v . The derivative with respect to 

2
  is a column of ones while the derivative with respect to 2

1v  is either one or   

raised to a power greater than or equal to one. We see from this that the closer   is to 

one, the more similar these two columns are, leading to a failure of the rank condition 

and problems of identification. In this case only the sum ( 2
 + 2

1v ) may be identified. 

These derivatives also show how longer panels can assist with identification; more 
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time periods result in terms containing   raised to higher powers, which makes the 

two derivative vectors increasingly different.  

As mentioned earlier, when modelling earnings dynamics it is important to 

allow for structural changes in the earnings process. Table 1b reproduces the 

derivative matrix for a model that includes time effects. This allows us to see the 

crucial role of time trends (and therefore the underlying evolution of inequality) in 

determining identification of the model. From the discussion in the previous 

paragraph, we recall that the identification problem associated with high values of   

arises because of a difficulty in distinguishing between the derivatives with respect to 

2
  and 2

1v . However, looking at columns (2) and (4) we now see that these 

derivative vectors include the factor loadings on the permanent and transitory 

components. If the importance of the transitory component is falling sufficiently 

quickly relative to the permanent component, this reinforces the rate of decline in the 

2
1v  derivative vector, thus aiding identification. However, the opposite outcome is 

also possible; a transitory component that is growing more quickly than the permanent 

component may slow down the rate of decline in the 2
1v  derivative vector. As a result, 

a combination of persistence and panel length that allows identification of a model 

without time trends may not be sufficient to identify a model with time trends.  

It is interesting to note that the lessons learned from this analysis carry over to 

more elaborate models of earnings dynamics. As discussed in Section 3, a number of 

researchers have estimated models that incorporate heterogeneous growth profiles and 

consider an ARMA rather than an AR process on the transitory variance shock. 

However it can be shown that the derivatives with respect to both 2
  and 2

1v  in a 

model with heterogeneity and an ARMA error process are identical to those presented 
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in Table 1b. Therefore it follows that the identification issues that we raise in this 

paper also apply to these models. 

In the next section we provide Monte Carlo evidence of models where 

identification is facilitated by the presence of time trends in the DGP, as well as 

instances where identification is hampered by time trends. We also discuss the 

practical implications of our findings. 

 

4b. Monte Carlo Simulation Results 

To examine the implications of the identification problems discussed in the previous 

section, we conduct a series of Monte Carlo simulations. Multiple data sets are 

generated using the DGP given by (5a) and (5b), for a range of parameter values, 

sample sizes and panel lengths.  

We first consider the simple model with no time trends. We choose ‘true’ 

values of ,  and , in line with results reported in the 

empirical literature. Initially, we take a very high value of 

2 0.5  2
1 0.3v

2 0.2 

0.95  , a short panel 

length,  and a sample size of 2,000. This combination of panel length and 

sample size is chosen to reflect typical sample conditions found in the European 

Community Household Panel (ECHP).

8T

3  

Results based on 10,000 simulations are shown in the top panel of Table 2 and 

Figure 1. The top panel of Figure 1 provides the density of the GMM estimator for the 

key parameters, while the lower panel reports the associated normal quantile plots for 

these distributions. Looking first at the estimates of   and 2
 , we see that the GMM 

                                                 
3 The ECHP is a widely-used panel for EU countries for 1994-2001. It is the only panel data set 
containing earnings data available for some European countries and so is well-suited to cross-country 
comparisons of earnings dynamics. 
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estimator is reasonably well behaved, even with short panels; these two parameters 

are consistently and precisely estimated. In addition the analytical standard errors 

consistently estimate the true standard deviations. The plots in Figure 1 indicate that 

the distribution of the estimator for these parameters is well approximated by a normal 

distribution. Furthermore, the empirical size for a two-tailed test of the hypothesis that 

the parameter equals its true value is close to its theoretical level. These results 

indicate that standard asymptotic theory is applicable for these parameters in this case. 

However, the problem of distinguishing between permanent and transitory 

inequality with high values of   is evident in Table 2 and Figure 1. In this case, 2
  

and 2
1v  are inconsistently estimated with high standard errors. For each of these two 

parameters, the analytical standard error underestimates the true standard deviation. 

Furthermore, Figure 1 shows that the empirical distributions of the parameter 

estimators are skewed and deviate significantly from normality. The failure of 

normality and the inconsistency of the analytical standard errors for 2
  and 2

1v  

combine to yield some size distortions in standard t-tests based on equation (3b), 

particularly for one-sided tests. For example the empirical size of a one-sided 

theoretical 5% test that 2
 >0.5 against 2

 <0.5 was almost 0. Finally we note that in 

almost 2% of cases, the estimated value of 2
  was negative. Reports of negative 

variances are not unusual in this literature and are often interpreted as a sign that the 

underlying model is misspecified. However, our analysis shows that negative 

variances may be a symptom of weak identification rather than model 

misspecification.  

As noted in the analytical section, the identification problem concerning 2
  

and 2
1v  that arises when ρ is high may be overcome by using longer panels. We 
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consider this issue in the second part of Table 2, which shows the results when we 

increase T to 25. This is the panel length used by Haider (2001) and is typical of 

datasets such as the British Household Panel Survey (BHPS) and the Panel Study of 

Income Dynamics (PSID), which currently have panels of 17 and 36 years 

respectively. Figure 2 shows the probability density function of the parameters and the 

associated normal quantile plots for this case. We see that the problems associated 

with 2
  and 2

1v  are significantly reduced when we use the longer panel; the 

parameters are precisely estimated, the analytical standard errors consistently estimate 

the true values and the parameter estimators are better approximated by a normal 

distribution.  

A question that often arises in this literature concerns the level of ρ at which 

identification becomes a problem. For the simple model analysed thus far, we can 

shed some light on this question. The estimates for our model when 0.8   are given 

in Table 3 and Figure 3. The results show that even with 2,000 observations and a 

panel of only 8 years, the model is well identified. All the estimated parameters are 

close to the truth on average and are precisely estimated. In addition the analytical 

standard errors are unbiased estimators of the truth and the empirical sizes based on 

the normal approximation are in line with theoretical predictions. Further analysis 

suggests that serious problems of identification only emerge in this model for values 

of   at or above 0.95 

In the remainder of this section we provide Monte Carlo evidence on the 

identification of models that allow for trends in the permanent and transitory 

variances. In the analytical section, we showed that the effect of time trends on the 

identification of the model using GMM is ambiguous. We noted that there may be 
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models that can be identified using short panels, even though persistence is high 

( 0.95  ). For this to happen, the evolution of the transitory component has to be 

such that it falls sufficiently fast relative to the permanent component. In Table 4 and 

Figure 4, we present results for a DGP in which tp  increases by 0.01 and λt declines 

by 0.12 in each successive period. In contrast to the model with no time trends, we see 

that the GMM estimator does a reasonable job of identifying the underlying model, 

even though persistence is very high. Both the parameter estimates and the analytical 

standard errors are closer to the truth on average. Furthermore there is a significant 

improvement in the precision of 2
  and 2

1v , and their empirical distributions are well 

approximated by normal distributions. 

However in Section 3 we also noted that some combinations of persistence 

and panel length that allow identification of a model without time trends may not be 

sufficient to identify a model with time trends. Table 5 and Figure 5 reports results for 

a lower level of persistence ( 0.8  ), but with the transitory component growing 

faster than the permanent component.4 In particular we allow the tp  to increase by 

0.01 and the λt to rise by 0.03 over the eight year period. It is clear from the results 

that this model is not well identified by the GMM estimator. Firstly the model failed 

to converge in almost 1% of the simulations. For the samples in which the model did 

converge, with the exception of  , all of the parameters are poorly estimated and the 

analytical standard errors are poor estimators of the true deviation.5 Furthermore, the 

normal distribution does not provide a satisfactory approximation to the empirical 

distribution, with some evidence of bimodality in the distributions of 2
  and 2

1v . In 

                                                 
4 This is a feature of many of the new theories of growth, e.g. Violante (2002). 
5 Because the distributions of the estimated analytical errors are highly skewed for this model, Table 5 
reports both the mean and the median of the estimated analytical standard errors. 
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addition there are very large size distortions for the hypothesis considered. The actual 

size of the nominal 5% hypothesis test ranged from 14% for   to 19% for 2
1v . We 

also found that in 1% of the simulations that converged, the estimator resulted in 

negative values for the transitory factor loadings, which are difficult to interpret in the 

context of this model. The problem of negative time trends has been encountered in 

the empirical literature and our results suggest that this may indicate weak 

identification. 

The results provided in the three lower panels of Table 5 and in Figures 6 to 8 

examine the sensitivity of our results to sample size. We consider increasing the 

sample size to 5,000, 10,000 and 40,000 respectively. Sample sizes in typical survey 

panels such as the ECHP, the BHPS or the PSID are often significantly less than 

5,000, while administrative data sets, such as those used by Dickens (2000), Baker 

and Solon (2003), Gustavsson (2004) and Capellari (2004), can provide sample sizes 

of the order of 40,000 or larger. We see that even for sample sizes as large as 10,000, 

the results are disappointing. Some of the parameters are imprecisely estimated with 

analytical standard errors that are biased. Furthermore, there is still evidence of 

significant size distortions when conducting hypothesis tests, as well as significant 

deviations from normality in the distributions of the estimators. If one has access to 

sample sizes of the order of 40,000, then both the parameters and standard errors are 

consistently estimated. However, even with this very large sample size, the empirical 

distributions shown in Figure 8 still exhibit deviations from normality for many of the 

underlying distributions, leading to size distortions when conducting hypothesis tests. 

Finally in this section, we consider some practical implications of our results. 

Our analysis has shown that focusing solely on the persistence of transitory shocks 

when considering identification of these models is inappropriate. Identification also 
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depends on the evolution of inequality over time. While some patterns of permanent 

and transitory inequality can assist identification, others can hinder it. We now 

consider whether the time trends that cause problems for identification are plausible. 

Further analysis shows that when   is less than or equal to 0.6, the model is well 

identified using relatively short panels ( 8T ) for any reasonable set of time trends. 

The transitory variance would have to increase by approximately 300% relative to the 

permanent variance over an eight year period before problems of identification would 

arise. As we are not aware of any empirical study that has reported such dramatic 

differences in the relative growth rates of permanent and transitory inequality, such 

trends seem implausible. This establishes a cut-off for the persistence of the transitory 

shock below which our model is identified with as little as eight years of data. For 

levels of persistence above this cut-off, identification will be sensitive to the evolution 

of inequality. 

 

5. Conclusion 

In this paper we examine the performance of the GMM estimator in the context of the 

covariance structure of earnings using a relatively simple model of earnings dynamics 

that nevertheless captures the important features of the process. We examine the 

sensitivity of parameter identification to key features such as panel length, number of 

observations, the degree of persistence of earnings shocks and the evolution of 

inequality over time. 

While traditional analysis in this literature has tended to focus on the degree of 

transitory earnings persistence when considering identification, we show that this 

emphasis can be misleading. Identification in these models depends on the interaction 

of the time pattern of inequality in the economy under consideration with the degree 
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of persistence. In theory, it is always possible to find some pattern of inequality which 

will cause problems for the GMM estimator no matter how low persistence is. 

However, our analysis suggests that provided the value of   is below 0.6, the AR 

model considered here is well identified for any reasonable set of time trends, even if 

only short panels are available. 
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Table 1b. Moment Expressions and their Derivatives in Model with Factor Loadings (T = ) 8
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Table 2. Monte Carlo Simulations for DGP with Very High Persistence of 
Transitory Shock and No Factor Loadings. 10,000 Replications. 

True Parameter Values: 0.95 , , , . 2 0.5  2 0.2  2
1 0.3v  tp  and  t  equal to 

one in each period. 
Parameter Mean Median Standard 

Deviation 
Mean  

Analytical 
Standard 

Error 

Empirical 
Size 

(Nominal   
.025 in 

both tails) 
8,  2,000 T N  

ρ 0.9501 0.9499 0.0133 0.0133 0.0217 
0.0278 

2
  0.4579 0.4978 0.3840 0.2539 0.0000 

0.0508 
2
  0.1999 0.2000 0.0100 0.0099 0.0294 

0.0194 
2
1v  0.3415 0.3011 0.3834 0.2524 0.0563 

0.0000 
25,  2,000 T N  

ρ 0.9500 0.9500 0.0045 0.0045 0.0202 
0.0309 

2
  0.4981 0.5006 0.0634 0.0636 0.0185 

0.0275 
2
  0.1999 0.1998 0.0088 0.0087 0.0329 

0.0191 
2
1v  0.3014 0.2990 0.0683 0.0687 0.0320 

0.0166 
 

Table 3: Monte Carlo Simulations for DGP with Moderately High Persistence of 
Transitory Shock and No Factor Loadings. 10,000 Replications.  

True Parameters: 0.8 , , , . 2 0.5  2 0.2  2
1 0.3v  tp  and  t  equal to one in each 

period. 
Parameter Mean Median Standard 

Deviation 
Mean 

Analytical 
Standard 

Error 

Empirical 
Size 

(Nominal   
.025 in 

both tails) 
8,  2,000 T N  

ρ 0.800 0.801 0.016 0.0159 0.017 
0.037 

2
  0.498 0.50 0.0299 0.0297 0.026 

0.023 
2
  0.1996 0.1999 0.0058 0.0057 0.032 

0.019 
2
1v  0.302 0.301 0.0246 0.0243 0.028 

0.025 
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Table 4: Monte Carlo Simulations for DGP with Very High Persistence of 
Transitory Error and Factor Loadings. 10,000 Replications.  

True Parameters: 0.95 , , , . 2 0.5  2 0.2  2
1 0.3v  tp  increasing by 0.01 and 

 t  decreasing by 0.12 in successive periods. 
Parameter Mean Median Standard 

Deviation 
Mean 

Analytical 
Standard 

Error 

Empirical 
Size 

(Nominal   
.025 in 

both tails) 
8,  2,000 T N  

ρ 0.9505 0.9510 0.0284 0.0270 0.0358 
0.0479 

2
  0.4995 0.4995 0.0272 0.273 0.0263 

0.0223 
2
  0.1991 0.1987 0.0132 0.0133 0.0399 

0.0147 
2
1v  0.3008 0.2996 0.0167 0.0164 0.0443 

0.0116 
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Table 5: Monte Carlo Simulations for DGP with Moderately High Persistence of 
Transitory Error and Factor Loadings. 10,000 Replications.  

True Parameters: 0.8 , , , . 2 0.5  2 0.2  2
1 0.3v  tp  increasing by 0.01 and 

 t  increasing by 0.03 in successive periods.  

Parameter Mean Median Standard 
Deviation 

Mean  
Analytical 
Standard 

Error 
(Median) 

Empirical 
Size 

(Nominal   
.025 in 

both tails) 
8,  2,000 T N  

ρ 0.7940 0.7949 0.0242 0.0232 
(0.0243) 

0.0453 
0.0890 

2
  0.5652 0.4874 0.5405 0.6929 

(0.0765) 
0.1109 
0.0614 

2
  1.3715 0.1926 16.2046 255.70 

(0.0282) 
0.1100 
0.0096 

2
1v  0.2345 0.3140 0.5395 0.6898 

(0.0736) 
0.0515 
0.1357 

8,  5,000 T N  
ρ 0.7970 0.7974 0.0167 0.0162 

(0.0164) 
0.0418 
0.0490 

2
  0.5170 0.4938 0.1543 0.0970 

(0.0577) 
0.092 
0.0245 

2
  0.387 0.1973 3.3048 24.306 

(0.0192) 
0.085 
0.002 

2
1v  0.283 0.3067 0.3427 0.0954 

(0.056) 
0.022 
0.102 

8,  10,000 T N   
ρ 0.7989 0.7989 0.0121 0.0120 

(0.0120) 
0.036 
0.0249 

2
  0.5088 0.4970 0.0823 0.0556 

(0.0443) 
0.074 
0.006 

2
  0.2268 0.1984 0.7987 0.2329 

(0.0139) 
0.067 
0.004 

2
1v  0.2913 0.3034 0.0814 0.0544 

(0.0432) 
0.006 
0.078 

8,  40,000 T N  
ρ 0.7996 0.7996 0.0062 0.0062 

(0.0062) 
0.033 
0.019 

2
  0.5016 0.4990 0.0248 0.0242 

(0.0231) 
0.0572 
0.0016 

2
  0.2002 0.1997 0.0077 0.0076 

(0.0072) 
0.0479 
0.0035 

2
1v  0.2984 0.3012 0.0243 0.0238 

(0.0026) 
0.0014 
0.0590 
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Figure 1: pdf of GMM Estimators (Top Panel) and Normal Quantile Plots 
(Bottom Panel). 
True Parameters: 0.95 , , , . 2 0.5  2 0.2  2

1 0.3v  tp  and  t  equal to one in 

each period. . 8,  2, T N 000
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Figure 2: pdf of GMM Estimators (Top Panel) and Normal Quantile Plots 
(Bottom Panel). 
True Parameters: 0.95 , , , . 2 0.5  2 0.2  2

1 0.3v  tp  and  t  equal to one in 

each period. . 25,  2, T N 000
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Figure 3: pdf of GMM Estimators (Top Panel) and Normal Quantile Plots 
(Bottom Panel). 

True Parameters: 0.8 , , , . 2 0.5  2 0.2  2
1 0.3v  tp  and  t  equal to one in 

each period. . 8,  2, T N 000
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Figure 4: pdf of GMM Estimators (Top Panel) and Normal Quantile Plots 
(Bottom Panel). 
True Parameters: 0.95 , , , . 2 0.5  2 0.2  2

1 0.3v  tp  increasing by 0.01 and 

 t  decreasing by 0.12 in successive periods. 8,  2,000 T N . 
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Figure 5: pdf of GMM Estimators (Top Panel) and Normal Quantile Plots 
(Bottom Panel). 

True Parameters: 0.8 , , , . 2 0.5  2 0.2  2
1 0.3v  tp  increasing by 0.01 and 

 t  increasing by 0.03 in successive periods. 8,  2,000 T N .
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Figure 6: pdf of GMM Estimators (Top Panel) and Normal Quantile Plots 
(Bottom Panel). 

True Parameters: 0.8 , , , . 2 0.5  2 0.2  2
1 0.3v  tp  increasing by 0.01 and 

 t  increasing by 0.03 in successive periods. 8,  5,000 T N . 
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Figure 7: pdf of GMM Estimators (Top Panel) and Normal Quantile Plots 
(Bottom Panel). 
True Parameters: 0.8 , , , . 2 0.5  2 0.2  2

1 0.3v  tp  increasing by 0.01 and 

 t  increasing by 0.03 in successive periods. 8,  10,000 T N . 
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Figure 8: pdf of GMM Estimators (Top Panel) and Normal Quantile Plots 
(Bottom Panel). 

True Parameters: 0.8 , , , . 2 0.5  2 0.2  2
1 0.3v  tp  increasing by 0.01 and 

 t  increasing by 0.03 in successive periods. 8,  40,000 T N . 
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