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Abstract

This paper investigates the counterparty credit risk of interest rate swaps positions using the credit valuation
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show that the CVA underestimation when using a Gaussian copula for modelling the dependence of PD and
EAD is about 51%–362% compared to using WWR, and the underestimation between using the standardised
Basel independent model and using the Gaussian copula is about 527%–1609%, including the period of
the 2007/2008 crisis. This has important implications for regulators, financial institutions, and credit risk
managers when calculating counterparty risk.
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1. Introduction

Banking regulation has advanced in establishing both control procedures and capital requirements, with

bringing different impacts on financial institutions. The financial crisis in 2007/2008 highlighted the need

for improvements in both credit risk measurement and management. Counterparty credit risk has become

the focus of attention of both managers and regulators, since many losses incurred during the 2007/2008

crisis resulted from events associated with the deteriorating credit quality of market participants (BCBS,

2011b). Although credit risk has already been the subject of numerous studies, an important element that

the crisis has brought to the fore involves pricing models of loan portfolios that have positions in derivatives.

In this context, not only can actual events of defaults cause substantial devaluations in financial institutions’

positions, but the deterioration of credit quality, of both banks and clients, can also affect the value of

portfolios exposed to counterparty credit risk.1

The BCBS defines the CVA as the difference between the value of a portfolio with derivatives considering,

respectively, the absence and the presence of credit risk of the counterparty (BCBS, 2011a). Importantly,

capital requirements under the CVA are linked to portfolios of derivatives, distinguishing them from the

traditional credit capital requirements associated with Expected Losses (EL) and Unexpected Losses (UL).

In fact, according to BCBS (2006) and BCBS (2011b), typical credit portfolios – for example, loans and

financing – are analysed in the guidelines of Basel II, while portfolios exposed to counterparty credit risk in

derivative transactions are analysed in Basel III.

In this research, our contribution to the literature is twofold: First, we calculate the CVA of interest rate

swaps’2 positions before, during, and after the 2007/2008 financial crisis. We establish a general modelling

of CVA based on the discussion in Cherubini (2013), which allows us to study the elements of the model

proposed by Sorensen and Bollier (1994) to price swaps exposed to counterparty credit risk. Later, we test

a WWR copula-based model applied to the calculation of the CVA of swaps.3 Additionally, we calculate

a CVA with Gaussian copula dependence for comparison purposes. Our study uses risk-neutral implied

volatilities4 extracted from the interest rate swaption market from the period of the 10 May 2005 to 1 August

2013 for the pricing of the three CVA dependence models. Although we did consider the credit quality of

1In fact, a study by the Basel Committee on Banking Supervision (BCBS) on the 2007/2008 crisis indicated that approximately
2/3 of credit losses came from the marked to market devaluations of positions exposed to counterparty credit risk and only 1/3
of losses came from the actual default of counter parties (BCBS, 2009). As a result, banking regulation has been directing its
efforts to improve capital requirements, more specifically, by measuring the credit valuation adjustment CVA (Credit Valuation
Adjustment), which is a metric to estimate marking losses on the market due to the exposure to counterparty credit risk.

2According to the Bank for International Settlements (BIS), by the end of the second semester of 2015, interest rate swaps
instruments accounted for 288,634 billion US dollars in notional amount from a total of 492,911 billion US dollars of the
over-the-counter (OTC) global derivatives market, a share of 58.56% of the total OTC derivatives market.

3Further analysis on copulas properties for tail dependency can be founs in Hua (2017), Su and Furman (2017), and Su and
Hua (2017)

4We consider risk-neutral implied interest rate swaption volatilities, as there exists no market price for counterparty credit
risk and, as Stulz (2004) and Bolton and Oehmkez (2013) report, during times of distress financial institutions have misvalued
OTC derivatives in favour of diminishing the collateral associated with the instruments held, which could mislead the study.
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the counter parties, our research aims to analyse the impact of modelling the wrong way risk WWR in the

underestimation of counterparty risk between two large institutions acting as dealer and customer. Finally,

we conduct sensitivity analyses to allow comparison of our results between traditional simple models based

on independent risk components – such as, for example, the one suggested by the Basel Committee – and the

dependency model based on copulas.

Our second contribution is that in light of the independent PD and EAD modelling for the CVA calculation

proposed by BCBS (2011b) in their standardised settings, we measured the magnitude of the underestimated

CVA of interest rate swaps positions in comparison with two alternative approaches: (i) a Gaussian copula5

CVA dependence model and (ii) a WWR CVA dependence model. We find that the underestimation of the

CVA of interest rate swaps might reach up to a 1600% in a WWR situation.6

The counterparty credit risk literature is extensive. General approaches for assessing the counterparty

credit risk of derivatives portfolios include Hull (1989), Duffie and Huang (1996), and Jarrow and Yu (2001).

Bomfim (2003) was the first study to assess the effects of the financial crisis7 over the counterparty credit risk

in interest rate swaps. Bomfim (2003) found that there existed no difference between synthetic interest rate

swap constructed with Eurodollar future prices by a no-arbitrage relationship over the real interest rate swaps

prices, indicating that there was no signalling effect before the crisis by the futures market. Counterparty

credit risk models and studies on credit default swaps (CDS)8 include Pan and Singleton (2008), Berndt

et al. (2010), Arora et al. (2012), and Bo and Capponi (2015). Pan and Singleton (2008) developed and

tested a new model for CDS terms structure that revealed the fact that default and recovery information

was included in the term structure. Berndt et al. (2010) derived a Markovian affine pricing model within the

Heath et al. (1992) multifactor framework, and in the empirical test they found that their model incorporates

more information than the aggregate information of CDS index tranches. Arora et al. (2012) found evidence

of counterparty risk premiums are priced in the CDS market and Bo and Capponi (2015) derived a new

closed-form expression for CVA valuation in presence of several defaults.

Although the BCBS has suggested standardised settings for the CVA, simplifying the analysis and

applying an exposure correction factor that reflects the spread used to discount a debt security with the

equivalent credit risk of the counterparty (BCBS, 2009), criticisms from practitioners and academics have

induced substantial changes in the criteria. Thus, the Basel Committee established a formula for the CVA

5Furman et al. (2016) reviewed Gaussian copulas properties for tail dependence modelling, and suggested the us of other
types of copulas with greater tail dependence, as in our case the WWR risk copulas.

6Our calculations reveal, in an additional empirical exercise with bank regulatory data of the interest rate swap positions,
that on average the 1600% CVA underestimation, will be equivalent to 1279% of the Bank capital, considering bank regulatory
data on interest rate swaps positions from 1986 to 2017.

7The main driver of the 2007/2008 financial crisis was the market and the funding liquidity that stemmed the cascade
effect on counterparty defaults. Brunnermeier and Pedersen (2009) developed a model that associated market liquidity with the
funding liquidity of an institution and Brunnermeier (2009) described the origin and the evolution of the crisis through these
market liquidity effects.

8Other studies of counterparty credit risk with other instruments include Hull and White (2006) for credit debt obligations
(CDO), Lo et al. (2013) for catastrophe equity put options, and Sakurai and Uchida (2014) for cross-currency swaps.
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based on a more detailed exposure to counterparty credit, taking into account the specific elements associated

with credit risk components: probability of default (PD), loss given default (LGD) and exposure at default

(EAD) of portfolios that include derivatives.

However, despite the evolution of the model in relation to the initial proposal of an adjustment factor,

several areas of attention still exist, especially concerning the assumption of independence between the

components of credit risk. In the modelling established by the BCBS to calculate the CVA, credit risk

components are considered independent. The dependency among these risk components may be relevant and,

therefore, not considering possible relationships can lead to inadequate measurement of risk. More specifically,

the existence of the WWR can affect risk assessment, leading to the underestimation of potential losses when

using models that only take into account independence among the credit risk components.

One of the first studies to assess the dependency of credit variables in counterparty credit risk was

Hull and White (2001). The Hull and White (2001) model considered a correlation between the different

institutions in the valuation of the CDS. More recently, Jorion and Zhang (2009) discovered an explanation

for the ‘contagion’ (default correlation) effect of creditors with a large exposure. Jorion and Zhang (2009)

found that the announcement of the bankruptcy of borrowers was strongly correlated with the CDS spreads

for the creditors. Lipton and Sepp (2009) calculated the CVA via the Merton (1976) structural model for

CDS, modelling the dependence of two factors by a joint jump intensity process. Gregory (2009) applied an

earlier version of the Cherubini (2013) model of maximum bound copula WWR in Cherubini and Luciano

(2002) to derive a general factor bivariate dependency model; nevertheless, the study was only theoretical,

with no empirical findings. Eckert et al. (2016) provide a dependency model for the joint distribution of LGD,

PD, and EAD; however, their model is based on the CreditMetrics normal distribution risk model and they

do not provide empirical evidence.9

The WWR is the term commonly used to denote an unfavourable dependence between exposure to credit

risk and the credit quality of the counterparty (BCBS, 2011b). The existence of the WWR is particularly

problematic because it can exacerbate losses, since the exposure to credit risk can be higher at precisely the

time when the probability of default increases. Alternatively, the probability of default may increase as the

amount owed by a counterparty increases.

The results suggest that by not incorporating the dependence between credit risk components, many

models underestimate the potential loss due to the counterparty credit risk. The analysis also indicates that

the WWR is relevant, therefore the adverse and joint fluctuations of risk components should be evaluated for

both risk management and for pricing purposes. Moreover, since the calculation of the CVA depends on the

modelling, for example, of the dependency relationships of credit risk components, the diffusion process of

9Recent counterparty credit risk mathematical models such as Brigo and Chourdakis (2009), Hull and White (2012),
Brigo et al. (2013a), Brigo et al. (2014), and Hull and White (2014) consider effects from collateralization, netting rules, and
rehypothecation additional to the WWR; their use could provide valuable empirical insights about multivariate dependency
effects on credit.
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market risk factors, and volatility of risk factors, counterparty credit risk assessments can also be subject

to risk modelling. In this sense, the study also shows, for the specific case of the CVA of swaps, that the

definition of the dynamics of the interest rates diffusion process also influences the results of counterparty

credit risk analysis.

The remainder of this study is structured as follows: Section 2 presents the notation and definitions for

measuring counterparty credit risk and the CVA. In Section 3, the CVA calculation of interest rate swaps

with the three different dependency models is presented. Section 4 describes the seven different interest rate

models used for measuring the CVA. Section 5 describes the data and the empirical calibration method

applied. Section 6 presents the results of the estimated volatility and the CVA. Section 7 provides conclusions,

with suggestions for further extensions of the work.

2. Modelling tail dependence in counterparty credit risk

Let us consider two counter parties denoted by B (the bank) and C (the client). In this paper, we will use

a risk-neutral probability measure, typically associated with pricing procedures, in contrast to the measure

of real probability, usually linked to risk measurement mechanisms (Brigo et al., 2013b; Cherubini, 2013).10

Notice that B does not necessarily represent a bank, but this notation makes it easier to adapt the discussion

to market conventions. The bank or dealer (B) provides a product to the customer (C), which has a certain

financial need. Given that, in most cases, the dealers have higher risk management capabilities, we will

establish that the analysis of counterparty credit risk is being conducted by counterparty B.

2.1. Credit valuation adjustment (CVA) definition

We define Π(t, T ) as the net cash flows from t to T of a portfolio of financial products that B traded

with C, discounted to the present value, and taking into consideration that C is not exposed to the credit

risk of B. In this formulation, t is the time of the valuation of the portfolio and T is the tenor of the further

cash flow to be exchanged between the counter parties. In the case of a portfolio with derivatives, T is the

maturity of the contract with the greater expiration date.

The value of this portfolio in terms of price at time t is the expected value of Π(t, T ), i.e. NPV (t) =

Et[Π(t, T )], where NPV is the net present value. One can therefore consider that the fair value, without

credit risk, of this portfolio of trades for counterparty B is worth NPV (t). Many derivatives’ pricing models

were developed from this premise of no credit risk of both counter parties.

From a practical standpoint, however, the assumption of portfolios without credit risk is unrealistic,

especially in the context of more complex operations such as the case of derivatives’ transactions. Thus,

10Further details on the suitability of a risk-neutral probability measure with respect to the real-world probability measure
can be seen, for example, in Gregory (2012) and Brigo et al. (2013b). Once having established the probability space and the
analysis of structure based on a risk-neutral world, let us now discuss the concept of the CVA, emphasising the unilateral model,
in which only one of the parties incurs in credit risk, since the other party has a negligible credit risk.
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although we assume that bank B has zero probability of going bankrupt, i.e., is default-free, client C can

go bankrupt. This assumption of the asymmetry of credit risk, whilst unreasonable, was usual in models

previous to the 2007/2008 crisis, since it was considered that, for instance, AAA dealers were attributed an

extremely low probability of not meeting their obligations. In general, the risk that client C was exposed to

the credit quality was considered negligible.

The bankruptcy of several high-reputation international banks during the subprime crisis showed that

even banks with AAA ratings could have difficulty in paying debts to their counter parties.

For modelling purposes, we consider that, as discussed, only bank B is exposed to the credit risk of the

counterparty. We will analyse the value of a portfolio P from the point of view of the bank, with a possible

default of the counterparty C in instant τC . Initially, two scenarios can be analysed: (1) the default occurs in

τC > T or (2) the default occurs in τC ≤ T .

In the first case (1), the portfolio cash flows would not be affected by the default that would occur only

after the expiration of the contract with higher maturity and therefore the evaluation follows the structure of

a no counterparty credit risk loan portfolio given by Π(t, T ).

In the second case (2), when the event of default occurs before maturity or at maturity T , the result of

B is associated with the present value of the flows that occur until default Π(t, τC) and the amount to be

paid or received due to the mark-to-market value of the portfolio. In this context, two situations should be

considered:

1. If the portfolio value is negative, i.e., if NPV (τC) < 0, then counterparty B is in a losing position and

pays cash flows to counterparty C, even if C has defaulted and hasn’t paid its obligations to creditors.

The value to be paid by B corresponds to NPV (τC) < 0. Note that one of the assumptions of the

model implies that B is default-free and will entirely honour its obligation to the counterparty; and

2. If the portfolio value is positive, i.e., if NPV (τC) ≥ 0, counterparty B receives RRCNPV (τC), where

RRC represents the recovery rate.

Combining the various scenarios of the net cash flows in relation to the default of C, then the value of

the portfolio of B exposed to credit risk of C can be defined as:

Π̃(t, T ) = 1(τc>T )Π(t, T )+1(t<τC≤T )

[
Π(t, τC)+D(t, τC)

(
min(NPV (τC), 0)+RRC max(NPV (τC), 0)

)]
.

(1)

According to the Basel Committee, for the specific case of a derivative contract, the CVA is typically

defined as the difference between the value of the product assuming that the counterparty does not have

default risk and the value of the product subject to counterparty default risk (BCBS, 2011a).
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Let us now examine the definition of the CVA, following Brigo et al. (2013b). Let Π(t, T ) and Π̃(t, T ) be

the net present values of the cash flows, measured at time t, of a portfolio maturing at T negotiated with a

counterparty without credit risk and with credit risk, respectively. The CVA, i.e., the value of the portfolio

value adjustment, depending on the counterparty credit risk, is given by the expected value of the difference

between Π(t, T ) and Π̃(t, T ):

CV AC = Et[Π(t, T )− Π̃(t, T )]. (2)

From the definition in (2), one can get the unilateral CVA.

Proposition 2.1. The credit value adjustment when only one of counter parties has credit risk is given by:

CV ABC = Et[1(t<τc≤T ) · LGDC · EADC ], (3)

where,

LGDC = 1−RRC is the loss given default (LGD; and,

EADC = (NPV (τC))+ is the exposure to counterparty credit risk in the instant of default (EAD).

Proof. See Appendix A1.

If we consider that the counterparty credit exposure, the loss given default, and the instant of default are

independent and establishing µPDC
= E[1(t<τC≤T )], µLGDC

= Et[LDGC ] and µEADC
= Et[EADC ], then

the adjustment due to credit risk can be rewritten, in a simple way, as the product of the mean values of PD,

LGD and EAD:

CV ABC = µPDC
· µLDGC

· µEADC
. (4)

In Basel II, although the primary concern is not with the pricing of counterparty credit risk, PD, LGD, and

EAD are called credit risk components and are used to estimate losses in traditional credit portfolios composed

of loans and financing operations. Those components are fundamental for the calculation of regulatory capital

requirements – for example, expected losses (EL) and unexpected losses (UL). It is important to notice that,

in Basel II, a similar formula to (4) is used to estimate the expected loss of traditional credit portfolios.

The definition of the CVA given by (3), although it is more complex, since it involves portfolios of products

that may have different characteristics, follows the logic of expected loss. In this context, the CVA is an

estimate of expected losses calculated from the probability of the counterparty defaulting, the actual loss in

the case of default, assuming that there is a certain recovery rate, and the value that an agent has to receive

from the counterparty which defaulted.
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2.2. Credit and equity risk tail dependence

WWR in a bivariate factor setting is related to the lower-lower tail risk of two factors being greater than

the initial estimates. Nevertheless, we are interested in other multivariate dependence studies, for example,

the dependence between credit and equity markets. For this purpose we use a Markov two-regime switching

model (Hamilton, 1989) to assess the dependence between PD, EAD, and the stock market.

Vassalou and Xing (2004) used the Merton (1974) structural model to find evidence of the relationship

between equity returns and default risks; their results suggest that a separation of the dataset into a

two-regime equity could be important for the calculation of the CVA. Ang and Chen (2002) and Longin

and Solnik (2001) found that there exist asymmetries between the bull and bear stock markets when the

upper-upper (bull) and lower-lower (bear) tail returns correlations of stocks and the market are tested.

Furthermore, Ang and Bekaert (2002) studied the impact of diversification in a Markov two-regime (bull vs.

bear) setting of (i) all-equity portfolios and (ii) equity plus a conditional risk-free asset, finding that when

higher lower-lower tail dependence is considered only portfolios with the conditional risk-free asset have a

significant difference, as compared to those portfolios that dismiss the existence of a two-regime setting.11

In our study we will divide the data into two regimes: (i) a regime considered to be ‘normal’ with average

mean-volatilities, (ii) a regime considered to be of ‘crisis’ with different mean to model asymmetry and higher

volatility. Let yt be the stock univariate process, xi,t be the explanatory variables, xnSi,t be the subset of xi,t
that has non-switching variables, xnSi,t be the subset of xi,t with the switching variables, St ∈ {1, . . . , k} be

a variable that represents the state at time t, and βi, φj,St be the parameters; a Markov regime switching

process can be defined as:

yt =
NnS∑
i=1

βix
nS
i,t +

Ns∑
j=1

φj,St
xSj,t + εt, (5)

εt ∼ P (ΦSt
), (6)

where P (ΦSt) is the distribution assumed for the innovations. Consider a two-regime model with differences

in mean and variance between the regimes, with Gaussian error innovations, then k = 2 and (5) reduce to:

yt = βi,St
x1,t + β2,St

x2,t + εt, (7)

εt ∼ N(0, σ2
St

). (8)

To implement the Markov two-regime switching model we used the MATLAB MS_ Regress toolbox from

Perlin (2010). Once the data has been divided into the two regimes, we tested the PD and the EAD

dependence on each regime.

11Our time-varying tail dependence analysis can be used jointly with Boonen et al. (2017) model on non-linear risks
aggregation to improve the analysis in capital allocation exercises.
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3. Pricing of swaps exposed to counterparty credit risk

As already discussed, the CVA in (3) includes the model from Basel III as a special case. The CVA in (3)

also incorporates, as a particular case, the seminal model of Sorensen and Bollier (1994), which analysed

the pricing of swaps subject to counterparty credit risk. Despite the fact that the CVA can be applied to

portfolios of financial products traded with a certain counterparty, the modelling of individual transactions

is relevant as it allows us to focus on the pricing of specific operations, without any influence from other

products in the portfolio.

For example, derivatives’ portfolios commonly have trades that may have cash flows in opposite directions,

market to market from netted positions. Thus, an interest rate derivative may have cash flows that match

those of a commodity derivative, traded with the same counterparty in the over-the-counter (OTC) market.

From the point of view of counterparty credit risk analysis, the cash flows from these trades can be grouped

together. In addition, various market risk factors can be interrelated, implying a diversification effect, which

in turn can mitigate some of the counterparty credit risk. However, from the perspective of analysis of the

derivative itself, each product can be viewed individually. Thus, the analysis of specific products is also

relevant for pricing derivatives’ products subject to the credit risk of the counterparty, as the sum of the

CVAs of the portfolio may differ from the sum of the CVAs of the derivatives that comprise the portfolio.

3.1. Swap analysis

We will focus our analysis of the CVA on traditional swaps. We will initially consider bank B bank holding

a long/short position in the swap. As discussed in Section 2, we will establish, for example, that bank B does

not impose credit risk on its counterparty C. However, client C, i.e., the counterparty of bank B, may go

bankrupt.

Without loss of generality, the notional value is defined as 1 monetary unit. The net present value

NPV B(t), measured in t, associated with bank B’s cash flows is given by:

NPV B(t) =
n∑
i=1

D(t, ti)δi(f(t, ti−1, ti)− rs(t0, tn)), (9)

where:

D(t, ti) is the discount factor of cash flows in a risk-neutral world;

δi = ti − ti−1 is the difference between the tenor of two subsequent cash flows;

rs(t0, tn), denoted by the swap rate, is the spot rate that will be applied to the fixed leg of the swap; and

f(t, ti−1, ti) is the forward rate, established in t, related to the spot rate that will be be applied to cash

flows in ti−1 with maturity in ti.
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Note that the swap rates rs and the forward rates f , as already indicated, are given in the same unit of

time horizons as t. At the time of the trade t0, the swap should reflect a balance between the expectations of

accrued interest through a fixed rate rs and forward rates f until the maturity of the operation. Thus, the

swap rrates(t0, tn) is the fixed rate that corrects the notional value each period, remaining constant between

the whole interval from the moment of the operation t0 until maturity tn. The forward rates f(t0, ti−1, ti)

represent the interest rates that the market, at instant t0, considers appropriate to be in place from ti−1 for

the period δi, taking into account the terms of the swap.

To prevent arbitrage, the cash inflows and outflows for a given counterparty, at instant t0, must be equal

and therefore NPV B(t0) = 0:

n∑
i=1

D(t0, ti)δi(f(t0, ti−1, ti)) =
n∑
i=1

D(t0, ti)δi(rs(t0, tn)). (10)

Since rs(t0, tn) is fixed for all periods of the swap then, from a non-arbitrage perspective, the fixed leg

will be adjusted by a rate, defined in the instant of the trade, equivalent to:

rs(t0, tn) =
∑n
i=1 D(t0, ti)δi(f(t0, ti−1, ti))∑n

i=1 D(t0, ti)δi
. (11)

From the perspective of risk analysis, if NPV B(t) < 0, the investor incurs losses as a result of market

risk, but is not exposed to credit risk, since there is no money to receive from the counterparty. In contrast,

if NPV B(t) > 0, the investor is in a winning position in terms of market risk, but with an exposure to credit

risk, considering that he may receive the entitled flows if the counterparty defaults.

In this context, exposure to credit risk at any instant t > t0 before maturity T is given by max(NPV B(t), 0),

which would involve the need to compare rs(t0) with the new rates to term f(t, ti−1, ti) concerning the time

periods for the cash flows to win between t and T . However, a more pragmatic exposure analysis engine

involves comparing the fixed swap rate at the time of the trade rs(t0, tn) with a fixed interest rate swap at

time t that is, rs(t, tn), which reflects forward rates f(t, ti, tj) in t, for maturities ti, i = 1, cdots, n− 1. This

new rate rs(t, tn) refers to the equilibrium value of a new swap transaction at time t.

If, due to default, the contract expires in τC , with tj−1 ≤ τC ≤ tj , then the exposure to credit risk is

given by the positive present value that occurs when sr(τC , tn) > sr(t0, tn), in the case of bank B paying

the fixed rate and receiving the floating rate. Under these conditions, the future exposure of bank B, if the

counterparty defaults, is equivalent to the present value:

NPV B(τC) =
n∑
i=j

D(τC , ti)δimax[rs(τC , tn)− rs(t0, tn), 0]. (12)

If the counterparty defaults, all future receivable or payable cash flows are discounted to the present

10



value at the instant of default τC and the transaction is settled. The amount must be paid by the debtor

counterparty to the winning counterparty. Considering a unilateral exposure, in which only counterparty B is

exposed to credit risk, then the amount at risk involves the positive value of the notional amount of the

difference adjusted by the swap rates in τC and t0.

The exposure shows an analogy with an option to enter into a swap, paying rate rs(t0, tn) and getting

rate rs(τC , tn). This result is equivalent to holding a long position in an option to enter, at a later date,

t = τC , in a swap paying a strike rate rs(t0, tn). In this case, the lender has an option to enter into a swap in

the long position. This option to choose between getting or not into a swap at a later date is called swaption.

For the formula of Cherubini (2013), we consider (3) and follow some assumptions consistent with the

guidelines of Basel III. Let us establish that the LGD, and hence the recovery rate, is independent of time of

and of the credit exposure level. Despite being used in many studies, this assumption may be unrealistic, as

shown by the work of Altman (2001) and Folpmers (2012). However, the focus of this analysis involves the

study of the relationship between the event of default and the exposure at the instant of default:

CV ABC = LGDC · Et
[
1(t<τc≤T ) · EADC

]
, (13)

where the superscript index shows the counterparty whose position is adjusted for the credit risk of the

counterparty that, in turn, is denoted in the subscript index.

To calculate the CVA from (3), we will analyse the exposure to credit risk of the counterparty jointly with

the default. As previously stated, if the counterparty C defaults in tj−1 ≤ τC ≤ tj , the contract is settled

and counterparty B is exposed to the credit risk if it has a profitable position. Thus, simultaneously, two

conditions must be met: (1) the counterparty C should enter into default in a moment t ≤ τC ≤ tn and (2) if

bank B is long in the swap, its exposure should be positive, i.e., max[rs(τC , tn)− rs(t0, tn), 0] > 0.

Note that, when these conditions are met, the present value of the exposure given by (13) isNPV B(τC) ≥ 0.

Therefore, considering (3), the likelihood that the default occurs at any time t and there will be n cash flows,

the present value in τC of the remaining cash flows, without taking into account the changes in the rates of

the fixed and floating swap, is given by A(τC , tj , tn) =
∑n
i=j D(τC , ti). When there is a default, the exposure

is given by:

EADC = A(tC , tj , tn) · Et ((max[rs(τC , tn)− rs(t0, tn), 0])) . (14)

The expectation can be obtained by identifying the potential positive differences between the swap rates,

i.e., in the interval that rs(τC , tn) ≥ rs(t0), when default occurs in tj−1 ≤ τC ≤ tj . Therefore:

Et ((max[rs(τC , tn)− rs(t0, tn), 0])) =
∫ ∞
sr(t0,tn)

P(rs(tj , tn) > u, tj−1 ≤ τC ≤ tj) du. (15)
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In this context, the CVA can be calculated as

CV ABC(t) = LGDC ·
n∑
j=1

A(t, tj , tn) ·
∫ ∞
sr(t0,tn)

P(rs(tj , tn) > u, tj−1 ≤ τC ≤ tj) du. (16)

Therefore, the CVA for bank B, with a long position in the swap, and exposed by counterparty credit

risk of C, is given by:12,13

CV ABC(t) = LGDC ·
n∑
j=1

A(t, tj , tn) ·
∫ ∞
rs(t0,tn)

C̃(1−Q(u),SC(tj−1)− SC(tj)) du. (17)

3.2. Analysis of dependence

The model in (17), defined using copulas, can be used to analyse several relationships between the

probability of default defined by (SC(tj−1)− SC(tj)) and the exposure at default defined by
∫∞
rs(t0,tn)(1−

Q(u)) du. Considering initially the instant of default independent of the exposure at default, then the

copula function to be used is C̃(u, v) = uv. Since
∫∞
rs(t0,tn) Q̃(u) du = EQ[max(rs(tj , tn)− rs(t0, tn), 0], with

Q̃ = 1−Q, the expectation represents the price of an option on a swap, since the counterparty would have

the right to get into a swap in favourable market conditions. Then the adjustment related to counterparty

credit risk is given by:

CV ABC(t) = LGDC ·
n∑
j=1

(SC(tj−1)− SC(tj))SwOp(t, tj , rs(t0, tn)), (18)

where SwOp(t, tj , rs(t0, tn)) is the price in t of an option on a swap, in which bank B has the right to go

long in a swap at tj , paying a fixed rate rs(t0, tn).

As noted by Cherubini (2013), this result is analogous to the work of Sorensen and Bollier (1994), which

is one of the first and most influential papers on the counterparty credit risk of derivatives. According to

Sorensen and Bollier (1994), the exposure of counterparty B to the credit risk of counterparty C in a swap

contract is equivalent to a series of European style options on swaps that are exercised by B to get reimbursed

12The model in (17) also incorporates the Basel guidelines. Cherubini (2013) shows that if we define EEj =
A(t,tj ,tn)

D(t,tj ) EQ[max(rs(tj , tn) − rs(t0, tn), 0], then, CV AB
C (t) = LGDC ·

∑n

j=1(SC(tj−1) − SC(tj))D(t, tj)EEj . Assuming a
discretisation that considers the exposure as an average between two periods, (EEj−1 +EEj)/2, one can obtain the counterparty
credit risk indicated by the Basel Committee. Thus, the model from Cherubini (2013) also includes other simpler definitions of
CVA.

13The important contribution from Cherubini (2013) for the calculation of the CVA involves representation of a joint
probability using copulas, which allows an analysis of many other derivatives’ products and the study of the relationships among
credit risk components. Following Cherubini (2013), Q(u) = P(rs(tj , tn) ≤ u) is the risk-neutral probability of the swap rate
being less than a given value u and considering an average default intensity for each term tj given by λi = si/LGD, with
survival probability ti defined by S(ti) = exp(−λiti), then: P(rs(tj , tn) > u, tj−1 ≤ τC ≤ tj) = C̃(1 − Q(u), SC(tj−1) − SC(tj)),
where: C̃(1 − z, v) is the copula function associated with the joint event of the swap rate in a given instant t being higher than
the swap rate in the trade date t0 and the counterparty C getting into default in an instant between tj−1 and tj (Cherubini,
2013).
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from losses due to the default of C. It is important to emphasise that the model from Sorensen and Bollier

(1994) works under conditions of independence among the credit risk components and aggregates LGD and

EAD in a single element.

Assuming now that there is dependence among the components of counterparty credit risk, more

particularly, between PD and DL, considering that exposure may depend on the time of default that, in turn,

derives from the survival probability of a counterparty in a given time interval. Analysing the WWR from

the perspective of counterparty B holding a long position in the swap, the exposure to credit risk increases

when the value of the swap increases, i.e., the greater rs(t, tn) compared to rs(t0, tn), the higher the value of

the position for the bank, but the higher the credit risk to which the bank is exposed.

A situation of WWR involves, for the buyer of the swap, a scenario in which the interest rate increases,

implying greater exposure to credit risk and, at the same time, a higher likelihood of default, given by the

difference between the survival probability of C between the two periods. Considering an extreme case,

defined by the copula C̃(u, v) = min(u, v), following Cherubini (2013):

C̃(1−Q(u),SC(tj−1)− SC(tj)) = min(1−Q(u),SC(tj−1)− SC(tj)) (19)

Proposition 3.1. Consider a perfect dependence between the exposure and the default of the counterparty.

In the worst case scenario (WWR) the CVA of a long position in a interest rate swap is:

CV ABC = LGDC ·
n∑
j=1

A(t, tj , tn)×(
max(k(tj)− rs(t0, tn), 0)(SC(tj−1)− SC(tj)) + SwOpP (t, tj ,max(rs(t0, tn), k(tj)))

)
, (20)

where:

SwOpP (·) represents the value of a payer swaption, in which one has the right, but not the obligation, to

get into a swap paying a fixed rate and receiving a floating rate,

and the worst case scenario CVA of a a short position in a interest rate swap is:

CV ACB = LGDC ·
n∑
j=1

A(t, tj , tn)×(
min(rs(t0, tn)− k∗(tj), 0)(SC(tj−1)− SC(tj)) + SwOpR(t, tj ,min(rs(t0, tn), k∗(tj)))

)
, (21)

where:

SwOpR(·) represents the price of a receiver swaption, in which the investor has the option to get into a
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swap paying a floating rate and receiving a fixed rate.

Proof. See Appendix A2.

Thus, through the use of extreme copulas, the model of Cherubini (2013) enables the study of a swap

price considering the credit risk of the counterparty, including situations of dependence or independence

between the probability of default and exposure at default.

An additional dependency model is tested. We replaced the copula in (19) by a Gaussian copula with the

purpose of testing different dependency models:

C̃G(1−Q(u),SC(tj−1)− SC(tj)) = Φ
(

Φ (1−Q(u))−1
,Φ−1 (SC(tj−1)− SC(tj))

)
(22)

Using the Proposition 3.1, it is straightforward to approximate the CVA of a long position interest rate swap

position with a Gaussian copula for the dependence between the EAD and the PD by:

CV ABC = LGDC ·
n∑
j=1

A(t, tj , tn) · Φ
(
Φ−1 (SC(tj−1)− SC(tj)) ,Φ−1 (SwOpP (t, tj , rs(t0, tn)))

)
, (23)

and CVA for a short position in the interest rate swap by:

CV ACB = LGDC ·
n∑
j=1

A(t, tj , tn) · Φ
(
Φ−1 (SC(tj−1)− SC(tj)) ,Φ−1 (SwOpR(t, tj , rs(t0, tn)))

)
, (24)

3.3. Pricing of swaptions

In order to apply the model from Cherubini (2013) for swaption pricing, we will briefly describe valuation

methods for bonds, swaps, and options on swaps, using interest rates diffusion processes.

Let r(t) be an interest rate diffusion process. We consider a general formula for the pricing of a zero

coupon bond, with unity face value at maturity. Then the price of the zero coupon bond is:

P (t, T ) = Et

[
exp

(
−
∫ T

t

r(s)ds
)]

. (25)

Following Duffie et al. (2000), (25) can be written as:

P (t, T ) = A1(t, T ) exp(−B1(t, T )r(t)), (26)

where:

A1(t, T ) = PM (0,T )
PM (0,t) exp[B1(t, T )fM (0, t)− σ2

4a (1− exp(−2at))B1(t, T )2];

B1(t, T ) = 1
a [1− exp(−a(T − t))];
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PM (0, x) is the discount factor for a cashflow in x, obtained from market data; and

fM (0, x) is the instantaneous interest rate observed in the market in 0 with expiration in T .

Considering (20) and (21), the CVA depends on the price of swaptions. Then the payer swaption and the

receiver swaption prices are given, respectively, by:

SwOpP (t, T,X) =
n∑
i=1

ciPut(t, T, ti, Xi), (27)

SwOpR(t, T,X) =
n∑
i=1

ciCall(t, T, ti, Xi), (28)

where:

ci = Xδi, for i = 1, · · · , n with δi = ti − ti−1.

The values in t of European Call and Put options with strike price X, and maturity T , associated with a

zero-coupon bond as the underlying asset which expires in S, are given, respectively by:

Call(t, T, S,X) = P (t, S)Φ(h)−XP (t, T )Φ(h− σp),

Put(t, T, S,X) = XP (t, T )Φ(−h+ σp)− P (t, S)Φ(−h),

where:

σp = σ
√

1−exp(−2a(T−t))
2a B(T, S) ,

h = 1
σp

ln( P (t,S)
P (t,T )X ) + σp

2 .

To calibrate parameters and price these options, we also need data of derivatives on swaps. Regarding the

swap pricing procedure, we use a local volatility model, in which parameters k(tj) and k∗(tj) are calculated

as follows (Cherubini, 2013):

k(tj) = fsr(t, tj , tn) · exp
[
−σj,n2 − Φ−1(SC(tj−1)− SC(tj))σj,n

√
tj − t

]
, (29)

k∗(tj) = fsr(t, tj , tn) · exp
[
−σj,n2 + Φ−1 (SC (tj−1)− SC (tj))σj,n

√
tj − t

]
, (30)

where:

fsr(t, tj , tn) is the forward swap rate, i.e., the rate defined in instant t for a swap beginning in tj and

expiration in tn;

σj,n is the volatility associated with a trade with a similar tenor; and
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Φ(x) represents a standard cumulative normal distribution.

4. Description of interest rate models

The counterparty credit risk in interest rate swap transactions depends on the diffusion process of the

relevant risk factors. Thus, the assessment of the CVA is influenced not only by choosing the form of

dependence between the risk components (PD, LGD, and EAD) but also by the model used to express

the dynamics of interest rates. According to Buetow et al. (2001), there are two distinct approaches to

the structuring of stochastic differential equations to model the behaviour of interest rates: (a) equilibrium

models and (b) no-arbitrage models.

The equilibrium models seek to establish mechanisms of pricing of debt securities under an analytical

framework based on market equilibrium, which specifies the market price of risk (Buetow et al., 2001; Vasicek,

2007). Some equilibrium models are traditionally studied, such as Vasicek (1977), Brennan and Schwartz

(1979), Cox et al. (1985), Longstaff (1989), Longstaff (1992), and Dai and Singleton (2003).

In contrast, no-arbitrage models use market prices to generate a grid of possible values of interest rates, by

which the theoretical price of a debt security is equal to the price observed in the market. Traditional models

of non-arbitration are Ho and Lee (1986), Black et al. (1990), Hull and White (1990), Black and Karasinski

(1991), Heath et al. (1992), and Hull and White (1993). Importantly, no-arbitrage models allow parameters

to be calibrated according to the prices traded in the market, and therefore offer greater comparability to

values traded by practitioners.

The CVA calculated in (17) establishes a model in which the instant of default, associated with a survival

function and therefore with the probability of default (PD), can be studied jointly with the exposure at

default (EAD).

We now calculate the CVA of an interest rate swap, using interest rates and volatilities’ market data.

We focus on the analysis of no-arbitrage interest rate models. To model the diffusion process of interest

rate r, we will use three one-factor short-term interest rate models: Black et al. (1990), Hull and White

(1990), and Black and Karasinski (1991), the multifactor interest rate model of Heath et al. (1992), the

two-additive-factor interest rate model of Brigo and Mercurio (2003) known as G2++, the stochastic volatility

model of Hagan et al. (2002) better known as SABR, and the LIBOR market model of Brace et al. (1997).

4.1. One-factor short-term interest rate models

The model from Black et al. (1990), although initially defined for a discrete analysis, can be adjusted to

incorporate a continuous stochastic differential equation:

d ln(r(t)) = Θ(t) d t+ σ(t) dW (t), (31)
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where r(t) is the instantaneous interest rate, Θ(t) is the mean reverting equilibrium, σ(t) is the instantaneous

short rate volatility, and W (t) is a Brownian motion.

Hull and White (1990) and Hull and White (1994b) present an extension of the Vasicek (1977) model, in

which interest rate dynamics are given by:

d r(t) = [ϑ(t)− α(t)r(t)] d t+ σ(t) dW (t), (32)

where ϑ(t) is the mean reverting equilibrium, and α(t) is the rate on which r(t) reverts to ϑ(t).

Black and Karasinski (1991) established that the dynamics of the spot rates follow a generalised model

from Black et al. (1990):

d ln(r(t)) = [θ(t)− a(t) ln(r(t))] d t+ σ(t) dW (t), (33)

where θ(t) is the mean reverting equilibrium, a(t) is the rate on which ln(r(t)) reverts to θ(t). Another

expression for this model is:

d ln(r) = a(t) [ln(µ(t))− ln(r(t))] dt+ σ(t) dW (t), (34)

where ln(µ(t)) is the mean reverting level; if log(r) > log(µ(t)) is superior then the interest rate will decrease,

and if log(r) < log(µ(t)) then the interest rate will increase. The resulting interest rate will have a lognormal

distribution, that is the continuous time limit of the Black et al. (1990) model. Binomial and trinomial trees

will be used to price the short rate models.

The model from Hull and White (1990) can be calibrated to the term structure of interest rates and

to the spot or forward term structure of volatility. However, a perfect adjustment to the term structure of

interest rates may imply problems in the adjustment to the volatility term structure, since not all volatilities

extracted from market prices are relevant, due to the lack of liquidity of financial products and to the fact

that the future volatilities’ term structure in (32) may not follow a realistic traditional shape (Carverhill,

1995; Hull and White, 1995; Brigo and Mercurio, 2006).

4.2. Heath, Jarrow, and Morton (1992) model

Taking into account the general model, given by (32), Heath et al. (1992) developed an analysis that

follows Hull and White (1990) and Hull and White (1994a), using an extension of the Vasicek (1977) model in

which a and σ are positive constants and ϑ can be calibrated to adjust to the implicit market interest rates.

In contrast with the previous models, the interest rate dynamics in Heath et al. (1992) follow the diffusion

process, given a maturity T :

d f(t, T ) = α(t, T ) d t+ σ(t, T ) dW (t), (35)
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with f(0, T ) = fM (0, T ) representing the term structure of interest rates given by the market price in t = 0,

where:

W = (W1, · · · ,WN ) follows a Brownian motion of N dimensions;

σ(t, T ) = (σ1(t, T ), · · · , σN (t, T )) is a vector of adaptive processes related to volatilities; and

α(t, T ) is an adaptive process, chosen from the vector of volatilities σ and the rate of evolution of the

dynamic of the N zero coupon bonds selected to the pricing model.

Instead of modelling the short-term interest rate, Heath et al. (1992) use the whole interest rate term

structure information by modelling the instantaneous forward rate curve. The forward rate curve includes

information of the future rates that eventually will become the short rate at some point in time.

4.3. Linear Gaussian two-additive-factor (G2++) model

Given the widespread use of the Hull and White (1993) model, Brigo and Mercurio (2003) developed an

extension with two linear Gaussian factors to overcome certain smile modelling limitations without losing the

simplicity of the model. Let xg(t), yg(t) be two Gaussian factors, the interest rate evolution is denoted by:

r(t) = xg(t) + yg(t) + φ(t), (36)

dxg(t) = −a(t)xg(t) d t+ σ(t) dW1(t),

d yg(t) = −b(t)yg(t) d t+ η(t) dW2(t),

with xg(0) = yg(0) = 0, where σ(t) and η(t) are the corresponding volatilities associated with the factors

xg(t), yg(t), respectively. The G2++ model is highly tractable and we will provide some of the swaption’s

calculations for measuring counterparty credit risk CVA using a G2++ analytical formula. We also provide

swaptions calculations using a numerical simulation method.

4.4. LIBOR market model

Interest rate market models were created to match the prices observed in some interest rate derivatives

such as caps and swaptions. These derivatives are priced by practitioners with the Black and Scholes (1973);

Black (1976) formulae, as in the Black and Karasinski (1991) model. The forward-LIBOR (London Interbank

Offered Rate) market model, or just the LIBOR model, was developed by Brace et al. (1997) as an extension

of Heath et al. (1992) when modelling simple but observable M forward rates fi(t), i ∈ {1, . . . ,M}. Let fi(t)

represent the multivariate Gaussian process of the forward rates between ti−1 and ti, σi(t) the instantaneous

volatility of fi(t), τi = ti − ti−1, and dWi(t) dWj(t) = ρi,j , then the Gaussian LIBOR market model is
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defined by:

d fi(t)
fi(t)

= ξσi(t) d
IE∑

k=IB

ρi,kτkσk(t)fk(t)
1 + τkfk(t) d t+ σi(t) dWi(t), (37)

where

IB = i+ 1, IE = j, ξ = 1, i < j,

ξ = 0, i = j,

IB = j + 1, IE = i, ξ = −1, i > j.

LIBOR market models are priced using a numerical simulation.

4.5. Stochastic alpha, beta, rho (SABR) market model

The SABR model developed by Hagan et al. (2002) is an extension of the market models where the forward

rates are modelled using a modified constant elasticity of variance (CEV ) diffusion with stochastic volatility.

Three parameters define this model: α represents the vol-vol or volatility of the volatility, β represents a

leverage effect of increasing volatility with falling prices (and vice versa), and ρ the correlation between the

forward rate diffusion and the volatility diffusion; the SABR model can then be defined by:

d fi(t)
fi(t)β

= σ(t) dWi(t), (38)

dσ(t) = ασ(t) dZi(t),

dW (t) dZ(t) = ρd t.

Numerical simulations will be used to price swaptions under the LIBOR model.

5. Data description and estimation procedure

For the research we used different datasets. The first dataset is used for calculating the zero-coupon

interest rate term structure.

5.1. Zero-coupon interest rate term structure estimation

To determine the implied zero coupon rates we use daily closing prices data from the US LIBOR from

overnight up to 6 months for the short-term part of the curve, and US interest rate swap markets for

maturities that range from 1 year up to 40 years for the medium- to the long-term part of the term structure.

LIBOR represents the average interest rate at which the banks in London will lend between them in American

dollars. As the fixed-income markets are in general OTC, then we use the data provided by the Bloomberg

platform. A detailed description of the instruments is in Table 1.
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********************************
Please insert Table 1 here.

********************************

The data span from 10 May 2005 to 29 January 2015 (Figure 1). Maturities for the selected LIBOR

instruments range from spot (overnight rate) to 6 months. Swap rates are provided as the implicit rates from

the interest rate swap between two counter parties on which the payer will have to pay a fixed rate and will

receive the spot LIBOR rate. Bloomberg swap rates are calculated from the Treasury bonds’ mid-prices and

the quoted swap spreads.

********************************
Please insert Figure 1 here.

********************************

Discount factors and forward rates are estimated from the zero-coupon rates (swap rates). With discount

factors and forward rates, the fixed rate of the interest rate swap (the swaption strike price) can be calculated.

Similarly, forward swap rates (FSR) with an specific tenor (2, 5, and 10) are calculated using discount factors

and forward rates. Finally, the interest rate term structure is estimated using a Nelson and Siegel (1987)

curve fitting, that will be useful for extrapolating the rates of intermediate maturities (Figure 2).

********************************
Please insert Figure 2 here.

********************************

5.2. Implied risk-neutral volatilities estimation

The second dataset used in this research is the risk-neutral interest rate volatility, extracted from the

caps/floors volatility (Hagan and Konikov, 2004). This risk-neutral market volatility defined by the Black

(1976) volatility surface is used for the calibration of the different interest rate models utilised in pricing

the CVA. The volatility is extracted for the caps/floors with strikes of 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%,

9%, 11%, 12%, 13%, and 14%, with maturities that range from 2 up to 10 years. Figure 4 shows the market

caps/floors volatility for the 1% and 5% strikes. The data were collected for the period from 10 May 2005 to

1 August 2013. In Figure 3 we observe the volatility surface for 10 May 2005.14

********************************
Please insert Figure 4 here.

********************************

14Duyvesteyn and de Zwart (2015) calculate the volatility risk premium of the interest rate term structures by constructing
synthetic derivatives (straddles) of the interest rate swaptions in the risk-neutral measure. Their conclusions will be important
when considering our results for hedging in the physical measure.
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********************************
Please insert Figure 3 here.

********************************

The calibration of Black cap prices (Black, 1976) is produced using the Black volatility and caps/floors

volatility cube method defined in Hagan and Konikov (2004). Black cap prices are then used to calibrate

the volatilities of the interest rate models. The Finance Toolbox from MATLAB is used for the zero-coupon

interest rate term structure estimation and the Black cap prices calibration.

5.3. Interest rate models calibration

The interest rate models are priced using binomial and trinomial tree numerical methods. The Black

caps/floors volatility and Black cap prices are used for estimating the parameters of the interest rate models.

In the case of the Black et al. (1990) model, Θ(t), σ(t) are the parameters to be estimated. Θ(t) is calibrated

with the zero-coupon interest rate term structure and σ(t) is calibrated with the Black cap prices using a

least squares method, implemented in the function capbybdt(·) of MATLAB. In the case of the Hull and

White (1990) model, the parameter ϑ(t) is calibrated with the zero-coupon interest rate term structure and

α(t), σ(t) parameters are estimated from the Black prices by a least squares method implemented by the

function hwcalbycap(·) of MATLAB.The Heath et al. (1992) model has parameters σ(t, T ), α(t, T ) that are

calibrated with the zero-coupon interest rate term structure by the least squares method using the function

capbyhjm(·) of MATLAB.

6. Results

Let us now analyse the empirical calibrated CVA of swaps, using the models of Black–Derman–Toy (BDT ;

Black et al., 1990), Black–Karasinski (BK ; Black and Karasinski, 1991), Hull–White (HW ; Hull and White,

1993), Heath–Jarrow–Morton (HJM ; Heath et al., 1992), G2++ (Brigo and Mercurio, 2003), LIBOR (Brace

et al., 1997), and SABR (Hagan et al., 2002).

To obtain the term structure of interest rates we use daily data from LIBOR rates of up to 6 months to

short term and the swap rates in the US market, with maturities between 1 and 50 years for the medium and

long term. The interest rates for given maturities are interpolated. References on theoretical and empirical

aspects concerning the implementation and calibration of interest rate models can be found in Bjerksund and

Stensland (1996), Boyle et al. (2001), Hagan and Konikov (2004), Leippold and Wiener (2004), Galluccio

et al. (2007), La Chioma and Piccoli (2007), and Keller-Ressel et al. (2012).

6.1. Empirical risk-neutral calibrated volatility

Figure 5 shows the calibrated volatility obtained by using each of the BDT, HW, BK, and HJM interest

rate models. One can observe a large difference in volatility estimates obtained from distinct models of
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interest rates. Thus, the calibration of parameters from market data is very sensitive to the model used and

can have a considerable impact on the calculation of the CVA.15 HW and HJM calibrated volatilities seem

to peak during the crisis near September 2008, and steadily decrease after then to the levels of 2005. BDT

and BK calibrated volatilities seem to have increased since mid-2007 until recently. BDT and BK volatility

behaviour is the result of the log prices modelling of interest rates, where recent lower short-term interest

rates will have a higher impact than higher interest rates.

********************************
Please insert Figure 5 here.

********************************

Figure 6 shows the results of the calibrated volatility obtained with the G2++, LIBOR, and SABR

interest rate models. The calibrated volatility of G2++ is composed of two terms: σ(t) the vol of the first

factor that reproduces the volatility of the events of the 2007/2008 financial crisis and seem to stabilise

after mid-2009, and η(t) that behave as a counterpart of σ(t) for the second linear factor, showing that

the volatility of the second factor decreases during the crisis periods as evidence of a ‘contagion effect’ and

high tail dependence, resulting in ‘only one-factor’ behaviour. LIBOR and SABR volatility surfaces are

richer in structure and both seem to have increased since 2007/2008. The calibrated volatility surface of

the LIBOR model is decreasing for higher maturities (higher for lower maturities); SABR seems to have a

hump-shaped surface volatility relatively stable during the entire period, but highly volatile in the short end

for the 2012/2013 period due to the decisions of the Federal Reserve over the short rate.

********************************
Please insert Figure 6 here.

********************************

In general, different interest rate models adopt certain characteristics of the volatility cube (Figure 4)

extracted as in Hagan and Konikov (2004). BDT, BK, and LIBOR are more sensitive to the short-term

rate and adjust more to the low strike (1%) caps/floors volatility, while HW, HJM, and SABR are balanced

sensitive in all maturities and adjust more to the medium strike (5%) caps/floors volatility (Figure 4).

6.2. WWR CVA results

Figure 7, 8, and 9 present the 10-year interest rate swap counterparty credit risk CVA in the WWR

scenario for the seven different interest rate models using the maximum positive dependence Fréchet upper

bound copula. Figure 7a plots the short-term rate models’ WWR CVA of the interest rate swap long positions

15In the models used, the volatility estimates are derived from at-the-money (ATM) options. However, it is important to
note that different strike prices for the interest rate options involve different estimates of implied volatility. Thus, an important
element in the calculation of the CVA also involves choosing the correct volatility model.
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that yield around an average of 12% during the May 2005 to August 2013 period and start to increase by the

end of 2007, reaching a maximum of 25% during the 2008 crisis and decreasing to an average level of 5% after

its peak. BDT is the model that produces the higher WWR CVA estimation and BK is the one that produces

the lowest WWR CVA estimation of the three models, all three models having similar behaviour before

and after the crisis. In light grey we highlight the ‘high volatile–larger mean’ regime found by applying the

Markov two-regime switching model as in (7) of Section 2.2. We can observe that the two-regime switching

accurately explains the 2007/2008 credit crisis and the 2011 Euro zone Greek bailout crisis. Figure 7a plots

the short-term rate models WWR CVA of interest rate swap short positions. In comparison to the WWR

CVA of interest rate swap long positions, all three short-term rate models have similar behaviour before,

during, and after the crisis starting from 25% before the 2007/2008 crisis and reaching the maximum at

50% shortly afterwards. An explanation is that before the crisis there was a relatively flat interest rate term

structure that later got transformed into a stepped term structure after 2008 with the consequence that the

interest rate swap short positions paid an extreme low short-term rate and received a higher medium- and

long-term interest rate for a long time. The market perceives this anomaly in the behaviour of the interest

rates and penalises it with higher counterparty credit risk, with important implications for the Federal

Reserve decisions on increasing the systemic risk by holding a low level of the short-term rate.

********************************
Please insert Figure 7 here.

********************************

Figure 8 plots the 10-year interest rate swap WWR CVA results for the HJM, LIBOR (LMM ), and SABR

interest rate models. The WWR CVA of interest rate swap long positions (Figure 8a) averages 30–35% for the

three multifactor models, from a low level of 10–20% before the 2007/2008 crisis and reaching a maximum

of 45–55% shortly afterwards for HJM and LMM models, and 55% during the crisis for the SABR model.

Similar to the short-term rate models, the behaviour of the WWR CVA interest rate swap long positions

differs between models after the crisis,16 since it is the LMM model that produces the higher WWR CVA

estimates. The WWR CVA interest rate swap short position (Figure 8b) is similar for the three multifactor

models, starting from 12–20% before the financial crisis to reach a maximum of 50% shortly afterwards,

with LMM having the largest WWR CVA estimate. The steady high levels of WWR CVA after the crisis

demonstrate a market premium for the Federal Reserve policy of lower levels for the short-term interest rate,

increasing the interest rate swap short positions’ counterparty credit risk.

********************************

16Feldhütter and Lando (2008) found that the convenience yield is responsible for a great part of the interest rate swap
spreads. It will be interesting to re-apply the study following the 2007/2008 financial crisis to measure the impact of credit risk
and specific factors in comparison with the convenience yield weight in determining the interest rate swap spread.
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Please insert Figure 8 here.
********************************

Figure 9 shows the 10-year interest rate swap WWR CVA results for the G2++ interest rate model. The

WWR CVA of interest rate swap long positions (Figure 9a) implied by this model seems to have a two-regime

behaviour: (i) one regime with an average WWR CVA of 10% steady during the during the sample data

period from 10 May 2005 to 1 August 2013, and (ii) one regime with an average WWR CVA of 60–100%

during mid -2005 and during the financial crisis. This is the only model that detects some counterparty risk

distress during the second semester of 2005, and this could be due to the flattening of the interest rate term

structure and the stopping of short-term rates increase by the Federal Reserve, signalling an initial credit

risk distress. The WWR CVA of interest rate swap short positions (Figure 9b) reveals a similar behaviour to

the WWR CVA of long positions with a two-regime scenario and similar values for each regime. The regime

appears as a result of the exploding G2++ first factor volatility σ(t), as shown in Figure 6a, as the result of

a contagion, and in consequence we observe that only one factor having influence on the model.

********************************
Please insert Figure 9 here.

********************************

6.3. CVA tail dependence

The main purpose of our empirical study is to empirically calculate the WWR CVA counterparty credit

risk (Cherubini, 2013) of interest rate swaps and determine differences from earlier independent PD and EAD

modelling (Sorensen and Bollier, 1994), and Gaussian copula dependence modelling for CVA calculations (Li,

2000). The dependency structure of PD and EAD is considered a tail dependency as the event of default

occurs only in the lower extreme of the life distribution of the institution. Independent CVA, dependent

WWR CVA, and Gaussian copula dependent CVA are calculated with (4), (20), and (23) respectively.

A calculation of the CVA Gaussian copula PD and EAD dependence model requires the estimation of an

additional parameter, the time varying correlation. If WWR by definition is the co-monotone variation of the

dependent risk factors, then we assume as the worst-case scenario a Gaussian copula correlation of ρ = 0.9.17

In Figure 10 we find the estimated Gaussian copula correlation for the different windows’ size (N = 7, 8, 9, 10)

used to estimate the empirical marginal densities.18 The ρ(t) parameter of the Gaussian copula in (22) is

estimated with the copulafit(·) function of MATLAB that calculates the sample correlation of the inverse

cdf of the PD and EAD empirical marginal densities. The EAD marginal density is proxied by the average

LGD in Table 3 of Jacobs (2012) from Moody’s Ultimate LGD Database 1987–2007 ; the PD marginal density

17In a robustness check, we tested with a correlation of ρ = 0.99 for the Gaussian copula dependence and the interest rate
swaps WWR CVA was still underestimated in all interest rate models.

18A window size of N will use the previous N year estimates’ frequency as an approximation of the marginal density.
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is proxied by the proportion of delisted companies in the CRSP database. Figure 10 shows an increasing

correlation; nevertheless the estimated value never reaches the assumed worst-case scenario of ρ(t) = 0.9.19

********************************
Please insert Figure 10 here.

********************************

Interest rate swap CVA valuations can differ not only because of the dependency structure and the

interest rate models used for its calculation, but because of the tenor of the instrument, the direction of the

position (long/short), and the conditions of the market (crisis/non-crisis). Table 2 presents a panel with the

results of the estimated CVA from 10 May 2005 to 1 August 2013 by (i) dependence structure: independent

PD and EAD of long interest rate swaps
(
CV ABL

)
, Gaussian copula dependent PD and EAD

(
CV ABL

G

)
,

and worst-case scenario WWR
(
CV ABL

WWR

)
; (ii) interest rate swap positions, long

(
CV ABL

)
and short(

CV ABS
)
; (iii) interest rate model: BDT, HW, BK, HJM, G2++,LMM, and SABR; (iv) interest rate swap

tenor, short term (2 years), medium term (5 years), and long term (10 years). In Tables 3 and 4 we have the

same CVA calculations for subsets of (i) non-crisis periods and (ii) crisis periods, respectively, applying the

Markov two-regime switching model as in (7) for dividing the sets. We observe that in Tables 2, 3, and 4 there

is a significant difference when using Gaussian copula and WWR copula dependence vs. the independent

modelling of PD and EAD for all the different categories measured.

********************************
Please insert Table 2 here.

********************************

********************************
Please insert Table 3 here.

********************************

********************************
Please insert Table 4 here.

********************************

Tables 5, 6, and 7 present the relative difference from Tables 2, 3, and 4 of the three tail dependency

models for the CVA of interest rate swaps calculations. For the period of 10 May 2005 to 1 August 2013

the Gaussian copula dependence CVA is between 527 and 1609% higher than the independent CVA for any

interest rate model, interest rate swap tenor, and instrument position, and the WWR is about 51–362%

larger than the Gaussian copula. For the crisis period, although the CVA estimates are higher, the relative

19Liu et al. (2015) provides a method for calculating confidence intervals of tail dependence measures that could be used to
provide an interval for our implicit time varying correlation.
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difference is lower, and during the non-crisis period the relative difference is higher; this inverse effect could

be due to the fact that the distributions of the marginals of the PD and EAD during the crisis have extreme

values that co-variate more closely to the Gaussian copula dependence structure; however, the difference

remains significant.

********************************
Please insert Table 5 here.

********************************

********************************
Please insert Table 6 here.

********************************

********************************
Please insert Table 7 here.

********************************

The most important factor when measuring the CVA of interest rate swaps was the dependency structure,

followed by the tenor and the interest rate model. The results are significant when measuring counterparty

credit risk for the actual regulatory capital framework, financial institutions, and risk managers.

6.4. Robustness checks

Due to the complexity implied in the valuation of the CVA of interest rate swaps, we conducted several

robustness checks; given our space constraints, we summarise them below without full detail:

(i) We find that the estimated LGD varies with time and has a strong correlation with the EAD. We

produced a new study on which the default intensity λ(ti) at time ti is modelled by:

λ(ti) = s(ti)
LGD

= 0.4, (39)

where s(ti) denotes the credit spread at time ti.20 In this new study the ratio of the spread and

the LGD will be constant, introducing a independent factor of a constant default intensity into the

CVA calculations to analyse its effect in the tail dependency behaviour. The results demonstrate

that the relative difference when modelling tail dependence between PD and EAD for the CVA of

interest rate swaps is reduced for the three different dependency models analysed: the estimated CVA

with Gaussian copula dependence is 170–307% higher than the CVA with independent PD and EAD,

20We calculated the mean default rates of Moody’s Caa-C rated companies (Moody’s Investor Service, 2011) yielding 27.68%
with a maximum of 57.89 for 1990; we then defined a default intensity of 0.4 considered an extreme event, with 40% of the
companies defaulting in one year.
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compared to the original 527–1609% estimates with time varying default intensity, for the period from

10 May 2005 to 1 August 2013. The relative difference between the WWR CVA and the CVA with

Gaussian copula reduces to 0.74–160% from 51–362% in the original estimation with time varying

default intensity. Notwithstanding, there exist significant differences in all categories between each of

the three dependency models, emphasising the importance of tail dependency modelling.

(ii) The Gaussian copula dependence model required to provide a correlation parameter ρ(t). We initially

defined ρ(t) = 0.9 as this is the largest empirical correlation value found when we estimated the copula

correlation (Figure 10, Section 6.3). In this robustness check, we defined the Gaussian copula constant

correlation of ρ(t) = 0.99. The results demonstrate a significant difference between the WWR CVA and

the CVA with Gaussian copula modelling of more than 100% in many cases.

(iii) We analysed the calculated the independent CVA, Gaussian copula dependent CVA, and the WWR

CVA surfaces (interest rate swap tenor vs. date) for the seven interest rate models studied, for long

and short interest rate swap positions. We further analysed the differences between the WWR CVA

long minus the WWR CVA of short interest rate swap positions. We found no observable difference

between the seven interest rate models, with two exceptions: the two-regime behaviour of the G2++

model, and the difference between the WWR CVA of long minus short interest rate swap positions of

the LIBOR model. In the case of the G2++ model, this behaviour was previously observed and is the

result of one-factor contagion dominating the behaviour of the model. In the case of the inverted WWR

CVA long minus short LIBOR model behaviour, for all models except LIBOR, extreme low short-term

interest rates favour a high premium for the counterparty credit risk of short positions in interest rate

swaps holders, as they will receive a positive difference fuelled by the low-rate policy of the Federal

Reserve, generating a negative surface for this difference (the WWR CVA of short positions is higher for

non-market models, as they neglect the market expectations of the forward curve); however, the LIBOR

model accounts for the forward expectations through market prices, and holders of long positions of

interest rate swaps have been faced in this model with a steep yield curve since the 2007/2008 crisis.

This steep yield curve is priced in the premium of counterparty credit risk long positions (the (WWR

CVA of long positions is higher for market models).

(iv) We tested additional sensitivity analysis for the different parameters of the CVA calculations of interest

rate swaps, valued with the HW model. The effects of the local volatility σ(t) of the swaption model,

the linear combination ρ between the independent and the WWR CVA, the interest rate swap tenor,

and shifts in the interest rate yield curve were analysed for different specific values. We found that

the volatility increases the magnitude of the CVA; a linear combination that favours the independent

model will steep the medium-term CVA curve and reduce the long-term CVA curve; an increase in the
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tenor will produce a humped CVA curve with higher values in the mid-term portion of the curve; and

an interest rate shift will negligible increase the CVA value.

7. Conclusions

In this research we tested the importance of dependency in credit risk factors, such as the probability of

default PD and exposure at default EAD. Our approach involves the use of copulae linking two components

of credit risk. Considering a dependency between the instant of default and the exposure value and using

a copula that establishes a perfect dependence, Cherubini (2013) develops an analytical formula for the

calculation of the CVA of interest rate swaps.

The use of copulas allows the study of WWR enabling the incorporation of dependency that was often

overlooked, as shown in the simplified formulas described, for example, in Canabarro (2009) and Gregory

(2012). In this context, this paper sought to extend the analysis of Cherubini (2013), taking into account

different models of interest rate diffusion. Considering that the pricing of swaps depends on the modelling

of the term structure of interest rates and their behaviour over time until the maturity of a derivative, the

analysis is justified, as different assumptions can have significant impact on the estimates of CVA.

Applying interest rate models from Black et al. (1990), Hull and White (1990), Black and Karasinski

(1991), Heath et al. (1992), the G2++ of Brigo and Mercurio (2003), the LIBOR of Brace et al. (1997),

and the SABR of Hagan et al. (2002), we calculate the CVA of interest rate swaps using the interest rate

swaption implied market volatility for the period of 10 May 2005 to 1 August 2013, and comparatively

analyse the estimates of the three different models of credit risk factors dependency for the CVA calculations

(independent PD and EAD, Gaussian copula dependence, and WWR copula dependence). The differences

between the three different dependency models range from 51% to 1609% of the estimated CVA, revealing

a clear underestimation when using regulatory independent models. The results indicate the existence of

differences that can impact the price adjustments in portfolios of derivatives, although no interest rate model

consistently generates higher or lower values of the CVA, suggesting a difficulty in reducing the capital

requirement solely from the choice of the diffusion model of interest rates.

These results have an important consequence for the regulatory institutions and risk managers. From the

point of view of capital adequacy, whether there are models that underestimate the CVA can be beneficial for

the purpose of capital requirements to meet regulatory agency demands, although it increases the likelihood

of non-conformities, which can later result in an increase in capital requirements. From the point of view of

risk management, in the case of swaps, the dependence of the CVA on the choice of interest rate, swaptions

and volatility models implies the existence of risk modelling. Thus, the analysis of various dependency models

is essential for a proper assessment of the CVA, and we suggest as for future research multivariate dependency

models that include all credit risk factors.
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A. Mathematical Proofs

A.1. Proof of Proposition 2.1

Proof. The discussion follows closely Brigo et al. (2013b). To prove the equivalence between (2) and (3), we

consider the definition of CVA given by Brigo et al. (2013b):

CV ABC = Et[Π(t, T )− Π̃(t, T )]

= Et
[
Π(t, T )− 1(τc>T )Π(t, T )−

1(t<τC≤T )

[
Π(t, τC) +D(t, τC)

(
min(NPV (τC), 0) +RRC max(NPV (τC), 0)

)]]
. (40)

Given that Π(t, T ) = 1(t<τC≤T )Π(t, T ) + 1(τC>T )Π(t, T ), then:

CV ABC = Et
[
1(t<τC≤T )Π(t, T )− 1(t<τc≤T )

[
Π(t, τC) +D(t, τC)(

min(NPV (τC), 0) +RRC max(NPV (τC), 0)
)]]

. (41)

DefiningNPV + andNPV − as the positive and negative parts ofNPV , respectively, we haveNPV +(τC) =

max(NPV (τC), 0) e NPV −(τC) = −min(NPV (τC), 0), which leads to:

CV ABC = Et
[
1(t<τC≤T )Π(t, T )− 1(t<τC≤T )

[
Π(t, τC) +D(t, τC)(

−NPV −(τC) +RRCNPV
+(τC)

)]]
. (42)

Since NPV (τC) = NPV +(τC)−NPV −(τC), then −NPV −(τC) = NPV (τC)−NPV +(τC). Following

Brigo et al. (2013b), therefore:

CV ABC = Et
[
1(t<τC≤T )Π(t, T )− 1(t<τC≤T )

[
Π(t, τC) +D(t, τC)(

NPV (τC)−NPV +(τC) +RRCNPV
+(τC)

)]]
= Et

[
1(t<τC≤T )Π(t, T )− 1(t<τC≤T )

[
Π(t, τC) +D(t, τC)NPV (τC) +D(t, τC)(

−NPV +(τC) +RRCNPV
+(τC)

)]]
= Et

[
1(t<τC≤T )Π(t, T )− 1(t<τC≤T )

[
Π(t, τC) +D(t, τC)NPV (τC)

]
+ 1(t<τC≤T )

[
D(t, τC)(

NPV +(τC)(1 +RRC)
)]]

. (43)
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Since Π(t, T ) = Π(t, τC)+D(t, τC)NPV (τC) and taking into account the definitions of LGDC = 1−RRC
and EADC = (NPV (τC))+ previously stated, then:

CV ABC = Et
[
1(t<τC≤T )D(t, τC)NPV +(τC)(1 +RRC)

]
= Et

[
1(t<τC≤T ) · LGDC · EADC)

]
. (44)

A.2. Proof of Proposition 3.1

Proof. The discussion follows closely Cherubini (2013). Then, the CVA of counterparty B subject to the

counterparty credit risk of C can be defined as:

CV ABC = LGDC ·
n∑
j=1

A (t, tj , tn)
∫ ∞
rs(t0,tn)

min [1−Q (u) ,SB (tj−1)− SB (tj)] du. (45)

Notice that SC (tj−1)−SB (tj) ≤ 1 does not depend on u. In addition, 1−Q (u) is monotonically decreasing.

Thus, two cases can be analysed: (1) 1−Q (u) ≤ SC (tj−1)− SB (tj) and (2) 1−Q (u) > SC (tj−1)− SB (tj).

In the first case, we have:

lim
u→∞

(1−Q(u))→ 0 ≤ 1−Q (rs(t0, tn)) ≤ SC (tj−1)− SC (tj) . (46)

Thus, the integral in (45) is equivalent to:

CV ABC = LGDC ·
n∑
j=1

A(t, tj , tn) ·
∫ ∞
sr(t0,tn)

(1−Q (u)) du. (47)

In the second case, we have:

lim
u→∞

(1−Q(u))→ 0 ≤ SC (tj−1)− SC (tj) < 1−Q (rs(t0, tn)) . (48)

In this case, the integral in (45) can be calculated in two parts, denoting scenarios between [rs(t0, tn), z)

and [z,∞). Thus,

CV ABC = LGDC ·
n∑
j=1

A(t, tj , tn) ·
(∫ z

rS(t0,tn)
(SC (tj−1)− SC (tj) du) +

∫ ∞
z

(1−Q) (u) du
)
, (49)

with z ∈ [rS(t0, tn),∞) e {z : SC (tj−1)− SC (tj) = 1−Q (z)}.
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Defining k(tj) = f−1 (SC (tj−1)− SC (tj)), with f = 1−Q(u), then:

CV ABC = LGDC ·
n∑
j=1

A(t, tj , tn)· (∫ ∞
k(tj)

(1−Q(u)) du+ k(tj)− rs(t0, tn))(SC(tj−1)− SC(tj))
)
. (50)

Let use (47) and (50), for the CVA calculation in (45) to yield the result.

Conversely, one can analyse the CVA of a short position in a swap, in which the B bank receives values

indexed to a fixed interest rate and pays a floating interest rate. In this case, the WWR involves the probability

of default increasing while the market interest rate falls. Thus, the bank pays less in the short position,

getting a higher fixed interest rate, obtaining gain in its marked-to-market position, however incurring in a

counterparty credit risk. Thus, in the case of a short position in the swap, the agent is subject to WWR

when there is a negative association between swap rates and the probability of default of the counterparty.

Therefore, taking into consideration Cherubini (2013), one extreme situation involves:

C(Q(u),SC(tj−1)− SC(tj)) = min(Q(u),SC(tj−1)− SC(tj)). (51)

Using an analogous argument to the long position in the swap, for the short position, one has:

CV ABC = LGDC ·
n∑
j=1

A(t, tj , tn) ·
∫ rs(t0,tn)

0
min[Q(u),SC(tj−1)− SB(tj)] du. (52)

Defining k∗(tj) = g−1 (SC (tj−1)− SC (tj)), with g = Q(u), and we follow Cherubini (2013) to yield the

result.
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Figure 1: This figure shows the LIBOR and swap rates evolution from May 2005 to August 2013. The historical
data of LIBOR rates go from spot to 6-month maturities. The swap rates are from 1 year to 40-year maturities. The
rates are extracted from Bloomberg.
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Figure 2: This figure shows the interest rate forward term structure calibrated using the Nelson–Siegel–Svensson
model for 10 May 2005. The actual forward rates are in circles. The rates are extracted from Bloomberg.
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Figure 3: Volatility surface of caps/floors for the period of 10 May 2005.
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(a) Volatility surface of 1% strike caps/floors from 10 May 2005 to 1 August 2013.

(b) Volatility surface of 5% strike caps/floors from 10 May 2005 to 1 August 2013.
Figure 4: This figure shows the caps/floors volatility surface for the period of 10 May 2005 to 1 August 2013.
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(a) BDT calibrated volatility. (b) HW calibrated volatility.

(c) BK calibrated volatility. (d) HJM calibrated volatility.
Figure 5: This figure shows the calibrated volatility for four different interest rate models (BDT, HW, BK, HJM ).
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(a) G2++ calibrated volatility.

(b) LMM calibrated volatility.

(c) SABR calibrated volatility.
Figure 6: This figure shows the calibrated volatility function and surface for the two-factor G2++, LIBOR, and
SABR interest rate models.
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(a) The Credit Valuation Adjustment (CVA) for a long position in an Interest Rate Swap (IRS).

(b) The Credit Valuation Adjustment (CVA) for a short position in an Interest Rate Swap (IRS).
Figure 7: This figure shows the Credit Valuation Adjustment (CVA) in an Interest Rate Swap (IRS) with one-factor
short-rate models: Black, Derman, and Toy (BDT), Hull and White (HW ), and Black and Karasinski (BK) in a
two-regime volatility framework (crisis period – high volatility in grey).
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(a) The Credit Valuation Adjustment (CVA) for a long position in an Interest Rate Swap (IRS).

(b) The Credit Valuation Adjustment (CVA) for a short position in an Interest Rate Swap (IRS).
Figure 8: This figure shows the Credit Valuation Adjustment (CVA) in an interest rate swap with multifactor-factor
interest rate models: Heath, Jarrow, and Morton (HJM ), LIBOR market model (LMM ), and stochastic alpha, rho,
and beta (SABR) in a two-regime volatility framework (crisis period – high volatility in grey).
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(a) The Credit Valuation Adjustment (CVA) for a long position in an Interest Rate Swap (IRS).

(b) The Credit Valuation Adjustment (CVA) for a short position in an Interest Rate Swap (IRS).
Figure 9: This figure shows the Credit Valuation Adjustment (CVA) in an Interest Rate Swap (IRS) for the two-factor
G2++ interest rate model in a two-regime volatility framework (crisis period - high volatility in grey).
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Figure 10: This figure shows the estimated Gaussian copula dependence correlation (ρ(t)) parameter for different
window sizes (N = 7, 8, 9, 10) of the frequencies used to proxy the marginal empirical distribution of PD and EAD.
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Table 1: Interest Rate Market Data

This table displays the different fixed-income instruments used for calculating the interest rate
term structure curve used in the valuation of interest rate swaps ( IRS) and swaptions.

Interest rate description Tenor Bloomberg Code

US dollar LIBOR

1 day US00O/N Index
1 week US0001W Index
1 month US0001M Index
2 month US0002M Index
3 month US0003M Index
6 month US0006M Index

US dollar swap rate

1 year USSW1 Curncy
2 years USSW2 Curncy
3 years USSW3 Curncy
4 years USSW4 Curncy
5 years USSW5 Curncy
6 years USSW6 Curncy
7 years USSW7 Curncy
8 years USSW8 Curncy
9 years USSW9 Curncy
10 years USSW10 Curncy
12 years USSW12 Curncy
15 years USSW15 Curncy
20 years USSW20 Curncy
25 years USSW25 Curncy
30 years USSW30 Curncy
35 years USSW35 Curncy
40 years USSW40 Curncy
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