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Abstract

This paper examines the impact of transportation costs on cropping patterns in 
Uganda. By combining village level data on land use and on crop specific land suitabil-
ity, I show that agricultural TFP could be increased by one third just by reallocating 
crops according to the underlying structure of comparative advantage. Interestingly, a 
decomposition indicates that half of these gains can be achieved just by redistributing 
crop production within narrowly defined areas serving the same urban markets. The 
empirical analysis suggests that differences in market access are a good candidate to 
explain these inefficiencies: in line with the qualitative theoretical model, more iso-lated 
farmers devote systematically more land to non-perishable food crops and their 
production is less aligned with the agro-climatic conditions they face.
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1 Introduction

In Sub Saharan Africa, a large share of the population relies on farming as the main source of
income and livelihood. This fact, paired with low agricultural productivity, explains a large
share of the existing cross country income differences (Gollin et al. 2007, Restuccia et al.
2008). Since the bulk of farming activities takes place in rural and often remote areas with
poor access to markets and infrastructures, it is natural to suspect that transportation costs
are one of the concurring causes of lagging agricultural productivity.

In this paper, I study how costly market access affects farmers decisions of what to grow
and estimate the size of the resulting inefficiencies in the geographical distribution of crops.
While existing studies (Costinot and Donaldson 2016, Sotelo 2019) focus on the lack of in-
tegration across regional markets, I look at the cropping patterns within areas that supply
the same urban markets. In particular, using village level data on land use and crop specific
agroclimatic suitability, I show that, in Uganda, inefficiencies in the spatial allocation of
crops within market regions are at least as important as the ones across regional markets.
To preview some findings, I estimate that farming productivity could be increased by one
third if crops were reallocated across villages according to the structure of agroclimatic com-
parative advantage. Interestingly, more than half of those gains could be achieved just by
redistributing crops within areas serving the same regional markets.

The main hypothesis is that these within market area inefficiencies are driven by differences
in transportation costs and market access. In order to formalize this insight, I develop a
model of crop choice similar to De Janvry et al. (1991) and the following works on farm
households’ land use decisions (see De Janvry and Sadoulet (2006) for a recent overview
on the literature) where farmers face heterogeneous transportation costs and different crop
specific productivity.1 By doing so, I show that the impact of transportation costs on crop
choices is twofold. In fact, low market accessibility not only increases the share of land
devoted to staple crops (and conversely reduces the acreage of high value cash crop), but
also reduces the responsiveness to crop specific comparative advantage of farmers whose
production and consumption decisions are interlinked.

The empirical analysis corroborates the main predictions of the model. Namely, I find that
farmers who are better connected to markets devote systematically more land to high value
crops (regardless of their relative suitability) than those who are located in more isolated
areas. Additionally, farmers in the most remote locations are less responsive to comparative
advantage of both food and cash crops, as they produce mostly for self consumption purposes.
In particular, the impact of relative agroclimatic suitability on production decisions tends to
fade as the cost of reaching urban markets increases.

To my knowledge, this is the first paper that examines cropping patterns within narrowly
defined market areas and estimates the relative magnitude of inefficiencies in the geographical
distribution of crops occurring within regional markets. This work is obviously related to
a number of studies that measure the efficiency losses resulting from the lack of integration

1These early works were meant to understand the lack of responsiveness to shocks in crops’ price, but
they did not include heterogeneity in land suitability for different crops.
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across domestic regional markets. Costinot and Donaldson (2016) show how an increasingly
pervasive transportation network in the US shaped the cropping patterns across different
counties, which gradually specialized into the production of relatively more suitable crops.
Adamopoulos (2019) performs a similar exercise to study the impact of a state intervention
in Ethiopia aimed at improving the road network, showing that it accounted for a relevant
share of the agricultural productivity gains experienced by the country between 1996 and
2014, partly through a more efficient allocation of land between food and cash crops. Sotelo
(2019) estimates a model that predicts that both welfare and productivity in Peru would
benefit from an abatement of the trade frictions across different region of the country, “by
unlocking the forces of comparative advantages” Sotelo (2019, p.2).

This paper also echoes the findings from a strand of literature that estimates the impact of
market accessibility on crop choices exploiting some natural experiments: Li (2017) shows
that Indian farmers exposed to a food programme relaxing their subsistence constrain reallo-
cated land from less suitable/profitable crops produced for self consumption to more valuable
ones, enhancing the overall allocative efficiency of cropping patterns across and within re-
gional market areas. Similarly, Qin and Zhang (2016) find that when Chinese villages are
connected to the main road network, farmers start specializing in the production of the cash
crops which are most suitable to their climate and soil conditions.

Furthermore, this work contributes to the broader literature on the impact of poor transport
infrastructures on agricultural outcomes in the developing world. A number of dual sector
macro models have incorporated transportation costs to study their effect on the distribution
of resources across sectors. Adamopoulos (2011) shows that they magnify the impact of
the subsistence constraint on the overall economic performance and widen the productivity
wedge between farming and the manufacturing sector. Similarly, Gollin and Rogerson (2014)
provide a model where costly trade between rural agricultural and urban areas results in a
larger and less productive agricultural sector and hinders aggregate productivity. In a cross
country framework, Tombe (2015) shows that prohibitive transportation costs prevent low
income countries from importing food from more developed economies with huge comparative
advantage in agricultural production, thus aggravating the agricultural productivity gap and
its negative impact on poor economies.

Poor road access has also been found to directly dampen agricultural production. Gollin
and Rogerson (2014) show that on a theoretical ground, transaction costs between urban
and rural areas do not only increase total food production needed to sustain cities, but also
reduce the adoption of modern intermediate inputs by farmers and in turn their yields. A
similar intuition underlies the empirical works by Dorosh et al. (2010) and Stifel and Minten
(2008), who find a strong link between land productivity and road connectivity and attribute
it to easier access to advanced technologies and inputs. Interestingly, this relationship does
not seem to be driven exclusively by differences in land quality that might correlate with
transport infrastructure placement.

Finally, this paper provides further evidence and estimates of misallocation of agricultural
factors of production in Sub-Saharan countries. Unlike the existing studies (Restuccia and
Santaeulalia-Llopis 2017, Chen et al. 2017), rather than looking at input distribution across
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farmers who differ in their inherent productivity, I focus on the distribution of crops across
areas with different agro-climatic conditions, whose impact on crop specific productivity is
well understood and less subject to measurement issues that might undermine the analysis
(Gollin and Udry 2019; Maue et al. 2020). Differently from the similar cross country analysis
by Adamopoulos and Restuccia (2018), the empirical results are based on micro level data
rather than projections and seem to indicate larger inefficiencies in the geographical crop
distribution in Uganda.

The paper is organised as follows: Section 2 illustrates the theoretical framework and links
the main predictions of the model to the data. Section 3 presents the data and the derivation
of the main variables, with a particular focus on the definition of comparative advantage
and transportation costs. Section 4 estimates the magnitude of the spatial inefficiencies in
cropping patterns and the relative importance of misallocation within regional markets. In
Section 5, I present the empirical analysis and comment on the findings. Section 6 concludes
the paper with some final remarks.

2 Theoretical Framework

This section presents a very simple model of crop choice. Unlike the otherwise rather simi-
lar work by Omamo (1998), the decision is made at the village rather than at the household
level. This reflects the fact that the two most important explanatory variables, namely trans-
portation costs and crop specific suitability, are defined at the village level in the data. This
implies that every village will be presented as a representative agent that makes production
and consumption decisions to maximise a unique utility function. More importantly, this
model includes differences in crop specific agroclimatic suitability across villages and thus
allows to study the joint impact of market access and comparative advantage in determining
farmers crop choice.2

2.1 The Model

Each village has a fixed endowment of land l that can be used to produce either a cash c or
a food f crop according to two different production functions: gc(lc) and gf (lf ) respectively.
Land is the only input in agricultural production and it is inelastically supplied to the farming
sector. Thus, the decision problem boils down to the allocation of land to each crop. The
utility is modelled as a function of the consumption of food cf and another representative
good (which is also the numeraire) cm i.e. U = U(cf , cm). Unlike food, this good cannot
be produced by farmers and can be thought of as a composite good representing all the
non-food items households need to source from the market. The cash crop does not enter
the utility function, but it can be sold at the regional market at the exogenous price pc.

2The implicit assumption of homogeneous land made by these seminal studies can be quite problematic
and unrealistic. For example, Stifel and Minten (2008) found that in the case of Madagascar the conventional
negative relationship between isolation and cash crop production was reversed and that was entirely driven
by the fact that the areas with more favourable conditions for the main export crops (vanilla, cloves and
coffee) also happened to be the least well connected to urban areas.

4



Similarly, the food crop can be either bought or sold at the same market at the exogenous
price pf . The fact that each village faces the same price reflects that they are all located
in the same region. When selling or buying crops, farmers face a per unit transport cost
∆, which depends on the location of the village as well as the quality of the transportation
infrastructure.3 Farmers face no transaction costs when buying the “other good” m.4 Finally,
each village has an exogenous source of income y, which can be thought of as the result of
some extra agricultural activities.

Formally, the resulting maximisation problem can be described as:

max
cf ,cm,lf ,bf ,cf

U(cf , cm) (1)

subject to:

cm + pfcf + ∆(bf + sf ) ≤ y + pfgf (lf ) + (pc −∆)gc(lc) (2a)

cf = gf (lf ) + bf − sf (2b)

lf + lc = l (2c)

bf ≥ 0 (2d)

sf ≥ 0 (2e)

where bf and sf indicate the quantity of food bought and sold respectively.

The first constraint imposes that the total amount spent on consumption goods and trans-
portation cannot exceed the total income (obtained as the sum between y and the value
obtained for the cash crop produced and sold). The second is the food consumption con-
straint, simply stating that the amount of food consumed must be equal to the difference
between the total production (plus the amount bought) and the quantity sold. The third
one imposes that the total land available is used for food or cash crop production only. The
remaining inequality constraints state that the amount of food crop bought and sold must
be non-negative.

The resulting Lagrangian (once the the land use constraint is substituted for) takes the
form:

L =U(cf , cm)

+ λ1[y + pfgf (lf ) + (pc −∆)gc(l − lf )− cm − pfcf −∆(bf + sf )]

+ λ2[gf (lf ) + bf − cf − sf ] + µ1bf + µ2sf

(3)

3For simplicity, transaction costs are assumed to be linear in the quantity bought/sold. Also, unlike
Omamo (1998), transaction costs are not crop specific. I discuss the implications of crop specific transporta-
tion costs in the next sections.

4Potentially, this could alter households’ optimal consumption bundle by making the representative market
good relatively more costly for more isolated households. However, given the simple structure imposed on
the preferences (with utility increasing only in food consumption up to the satiation point), relaxing the
assumption on frictionless good does not make any difference in terms of production decisions. Also, a
more flexible preference structure combined with non zero transaction costs when buying the market good
m would not alter (and actually reinforce) the main predictions of the model as more isolated farmers would
also consume relatively more (self produced) food.
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The most immediate way to study the qualitative impact of transportation costs on crop
choice is to compute the shadow price of food crop f , which represents the value farmers
attach to the crop and on which the land use decisions are based.

The first order conditions for cm, cf and lf are:

∂L
∂cf

= 0⇒ ∂U(.)

∂cf
= λ1pf + λ2 (4a)

∂L
∂cm

= 0⇒ ∂U(.)

∂cm
= λ1 (4b)

∂L
∂lf

= 0⇒ (λ1pf + λ2)
∂gf (.)

∂lf
= λ1(pc −∆)

∂gc(.)

∂lc
(4c)

Food shadow price p∗f can be obtained as:

p∗f =

∂U(.)
∂cf

∂U(.)
∂cm

which is the value that sets the ratio of the marginal utilities equal to the ratio of prices.5 By
plugging in the first order conditions, the expression becomes p∗f =

λ1pf+λ2
λ1

= pf + λ2
λ1

.6

The value of the multipliers can be found by solving the remaining conditions:

∂L
∂bf

= 0⇒ λ2 = λ1∆− µ1 (5a)

µ1 ≥ 0 (5b)

bfµ1 = 0 (5c)

∂L
∂sf

= 0⇒ λ2 = −λ1∆ + µ2 (5d)

µ2 ≥ 0 (5e)

sfµ2 = 0 (5f)

where the multipliers µ1 and µ2 are set to be non-negative since the underlying problem is a
maximisation.

This implies that the food decision price depends on the village net position in the food
market. In particular, where the village is a net importer (bf > 0) λ2 = λ1∆⇒ p∗f = pf + ∆
thus the food decision price equals the consumer price (which is the sum of the regional
market price and the transportation cost). Conversely, if the village is a net seller, λ2 =
−λ1∆ ⇒ p∗f = pf − ∆ and therefore the shadow price equals the producer price. Finally,
where the village is autarchic, the decision price equals pf−∆+µ2, with µ2 > 0 (or pf+∆−µ1

with µ1 > 0) and therefore it lays between the consumer and the producer prices.

5In this case, m is the numeraire good, therefore p∗f can be obtained as the ratio between marginal utilities.
6The same result could be obtained by looking at the supply side by imposing the equality of the marginal

value of food and cash crop production, formally: p∗f
∂gf (.)
∂lf

= (pc −∆)∂gc(.)
∂lc

.
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It follows that unless the village is a net food exporter, the producer price represents a lower
bound of the shadow price on which farm households base their production decisions. There-
fore, in maximizing their utility, farmers might optimally deviate from the profit maximizing
land allocation. This implies that, ceteris paribus, villages in more isolated areas where ∆ is
higher will tend to devote a higher share of their land to the food crop. Up to this point, the
theoretical framework is mirroring the one developed by, among others Fafchamps (1992) and
Omamo (1998) and the predictions obtained are in line with the existing literature.

In the following section, I augment this benchmark model to account for heterogeneous land
endowment which is captured by different crop specific land productivity.

2.2 Land heterogeneity and comparative advantage

Differences in crop specific land suitability are incorporated through the production functions
gf and gc. For the sake of tractability, I assume that they are linear in the amount of land
devoted to each crop; in formal terms:

gf = Flf

gc = Clc

where both F and C are village specific.

I assume that utility is increasing in food consumption only until the saturation point cf is
met. Once this threshold is reached, utility is a generic function u which is increasing in cm.
Formally:

U(cf , cm) =

{
cf , if cf ≤ cf

u(cm), if cf > cf

This implies that, for each village, the priority is to meet the food consumption need (either
by producing or by buying the food crop) and good m is bought and consumed only once
food subsistence is guaranteed.

The production decisions are a function of the relative magnitude of the transportation costs
and the crop specific suitability. In particular, three different scenarios can be identified:

F

C
≥ pc −∆

pf −∆
(6a)

F

C
≤pc −∆

pf + ∆
(6b)

pc −∆

pf + ∆
<
F

C
<
pc −∆

pf −∆
(6c)

The first case applies to villages with relatively high food crop suitability, to the extent that
it guarantees higher monetary returns than the cash crop. For this reason, regardless of
whether the resulting production exceeds or falls short of the subsistence threshold, all the
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land available is devoted to the food crop. Intuitively, in the former case the excess production
is sold to the market to maximise revenues while in the latter it will be produced for self
consumption only. Either way, producing the cash crop is never optimal as it generates lower
revenues than the food crop and it does not enter the utility function.

The second scenario depicts the opposite situation where land suitability is much higher for
cash crops (relative to the magnitude of the transportation costs), which means that the whole
land endowment is optimally devoted to cash crop production. Indeed, when condition 6b is
met, producing and selling C units of cash crops generates enough revenue to buy at least F
units of food, even once transportation costs are accounted for.

In both of these scenarios, transaction costs are not pronounced enough to determine any
deviation from the profit maximising land allocation. In fact, ∆ only affects the feasible
consumption set (as higher ∆s reduce the value of the production and in turn the amount
of goods that can be afforded) but it does not alter the crop choices made. More precisely,
production and consumption decisions are completely independent and farmers act as pure
profit maximisers.7 This also implies that villages are fully specialised in the production of
the crop that maximises monetary returns.

Conversely, when the transaction costs are high enough, farmers face the situation depicted in
Equation 6c. In this case, although the cash crop guarantees higher monetary returns, due to
the high cost of accessing agricultural markets, farmers are better off producing food for self
consumption purposes and use the residual land (if any) to grow cash crop. Intuitively, this
happens because producing and selling C units of cash crops allows them to buy less than F
units of food crop. Doing so is therefore only convenient once the village’s food consumption
needs are satisfied (in order to maximise the consumption of the other good m).

Formally, the quantity of land devoted to the food crop is:

l∗f =


l if F

C
≥ pc−∆

pf−∆

0 if F
C
≤ pc−∆

pf+∆
cf
F

if pc−∆
pf+∆

< F
C
< pc−∆

pf−∆
and cfF ≤ l

l if pc−∆
pf+∆

< F
C
< pc−∆

pf−∆
and cfF > l

(7)

This shows that transportation costs not only result in deviations from profit maximizing
cash crops, but also reduce (and potentially reverse) the impact of agronomic comparative
advantage on land use patterns. Indeed, in the case of interdependence between consumption
and production decisions, the higher the suitability to food crop F is, the lower the amount
of land devoted to it in equilibrium l∗f will be.

Figure 1 plots the equilibrium share of land devoted to the food crop as a function of the
food crop suitability F and maintaining everything else (and crucially cash crop suitability C)
fixed. Where there are no transportation costs (∆ = 0), there is full specialization and villages
grow either the cash or the food crop only, depending on which one generates higher revenue.

7Note that this does not necessarily imply that farmers grow cash crop only, as the so-called food crop
can be the one that guarantees the higher returns given the expected yields and prices.
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Figure 1: Transportation costs and optimal land use

0
.2

.4
.6

.8
1

%
 la

nd
 d

ev
ot

ed
 to

 fo
od

 c
ro

p

Food crop suitability

∆ = 0 Low ∆ High ∆

On the other hand, when ∆ > 0, there are deviations from this outcome. In particular, for
some values of F, there is interdependence between production and consumption decisions,
which results in both crops being grown. More specifically, when food suitability is not high
enough for the food crop to be the profit maximising one, the share of land devoted to it
is a negative function of F, and therefore crop choices go against the underlying structure
of comparative advantage. This pattern is particularly marked for high values of ∆, which
widen the set of values F such that pc−∆

pf+∆
< F

C
< pc−∆

pf−∆
i.e. where specialization does not

occur and the crop choice deviates from the structure of comparative advantage.

To sum up, the model shows that transportation costs not only generate deviations from the
profit maximizing crop choice, but also reduce the responsiveness of farmers to comparative
advantage. Importantly, although the underlying insight is perfectly in line with the trade
literature on integration across different regional markets, this framework describes the dis-
tortionary impact of transportation costs on production within producers operating in the
same local area and highlights the issue of market accessibility of rural farmers rather than
of connectivity across regional markets.

2.3 From theory to practice

Before moving to the presentation of the data and the econometric analysis, it is useful to
point out some differences between the model and the necessarily more complicated structure
of the data and to generalise its predictions for the real world scenario.
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Table 1: Crops characteristics

Percentage land Potential revenue Percentage sold
Overall Village (mean) % Rev max (village) Mean % (village) Mean (village) Overall

Maize 18.48 16.88 14.17 70.12 37.75 57.76
Cassava 16.26 15.47 0.03 56.69 20.27 29.14
Matoke 14.67 16.61 16.47 71.81 20.60 36.85
Beans 10.54 10.56 0.03 47.92 29.88 47.07
Swpot 7.94 7.76 13.53 68.28 11.20 14.82
Sorghum 6.82 5.79 5.04 55.46 20.57 22.31
Coffee 6.35 6.90 49.78 88.73 100 100
Grnut 6.19 5.25 0.95 42.33 30.00 42.37
Millet 4.77 3.76 0.00 20.73 24.70 39.68

The first column reports the percentage of the total land devoted to each crop, while the second the average
land per village. Third and fourth columns refer to the potential revenue per hectare. Column 3 presents
the percentage of villages where the crop is the one that maximises revenue, while column 4 indicates the
average ratio of the potential revenue of the crop and of the revenue maximising one. The share of the total
production that is sold for each crop is presented both as the mean across villages with non zero production
(column 5) and as a fraction of the aggregate output (column 6). Source: Ugandan Census of Agriculture.

The most obvious departure from the theoretical framework is that farmers can choose be-
tween more than two crops, and that the distinction between food and cash crop is often less
clear-cut than what is assumed in the model. The complexity of Ugandan cropping pattern
is clearly depicted in Table 1, which provides statistics on the nine most important crops
grown in the country (by acreage).8 Two things in particular need to be noticed: first, there
is no such thing as a clearly dominant crop, as the most widely grown (maize) only accounts
for less than 20 percent of the total agricultural land, closely followed by cassava and matoke.
Even put together, these crops account for less than half of the total acreage.

In addition, with the sole exception of coffee, there is no crop that is grown for selling
purposes only. Indeed, the percentage of the total production sold ranges from 13 percent
for sweet potatoes to 58 percent for maize. Unsurprisingly, coffee is also the crop with the
highest market value. Indeed, it is the produce that maximises expected revenue in half of
the villages in the sample and on average guarantees a return equal to 88 percent of the
revenue maximising crop.9 For this reason, it fully reflects the characteristics of the textbook
cash crop.

A viable way to identify other cash crops would be to choose the ones that present similar
values in terms of monetary returns and marketisation. However, the relationship between
potential revenues and percentage sold is not as clear when all crops are taken into account.
In particular, as can be seen in Figure 2, it is not necessarily the case that crops with higher
potential revenue are systematically more likely to be sold (the positive slope of the linear
fit is indeed solely driven by coffee). For example, very valuable crops like sweet potatoes
and matoke are less commonly sold than less or equally profitable crops like millet, beans
and maize. This seems to question the dichotomy between cash and food crop stated in the

8The figures refer to the Ugandan Census of Agriculture, which is one of the datasets used in the empirical
analysis. I will elaborate on the structure of the data in the next section.

9Potential revenue per acre is computed as the market price (which is the median obtained by pooling all
the transactions for each of the crops in the World Bank’s 2009 LSMS for Uganda) and the expected yield
estimated by the GAEZ agronomic model (see next section for more information on it).
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Figure 2: Average potential revenue and percentage sold
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Percentage sold on the y axis refers to the aggregate production for each crop. Average
percentage revenue is obtained as the average ratio of the expected value of the crop
and the revenue maximizing crop across all villages. The solid line represents the linear
fit between the two variables while the dashed one plots the linear fit when excluding
coffee.

model and introduces some additional complexity in farmers’ cropping decisions.

However, a clear pattern can be identified: Indeed, less perishable/bulky food crops such as
cereals, pulses and oil seeds display systematically higher levels of marketisation given their
expected monetary returns. This is possibly driven by the fact that these crops are easier to
transport and/or store and therefore can be transported for longer distances without losing
their market value whereas tubers like sweet potatoes and fruit like matoke are both heavier
and more perishable and so less convenient to move to far markets. Therefore, these crops
are realistically very profitable to be sold where markets are easy to access and only valuable
as food where they are not.

In light of that, the predictions of the model can be generalised to a context where crop choice
involves a mix of pure cash crops (coffee) and food crops which differ in their sensitivity to
transportation costs. In particular, lower access to markets will plausibly reduce the amount
of land devoted to cash crops (as indicated by the model) and food crops with high market
value, but very susceptible to transportation costs (like matoke and sweet potatoes) and
increase the share of land used to grow less perishable food crops (like maize, millet and
sorghum).

In terms of responsiveness to comparative advantage, the predictions of the model are left

11



unaffected, as it applies equally to the food and the cash crop. However, the fact that in
the real world farmers have different food crops they can pick from might result in a lower
distortionary impact of transportation costs as they might adjust their consumption decisions
depending on the agronomic condition they face (i.e. consuming predominantly crops that
are easy to grow in their area). The extent to which they are willing and able to do so depends
crucially on the degree of substitutability of their preferences and modelling it is beyond the
scope of this paper.10 However, this possibility is accounted for in the interpretation of the
findings from the empirical analysis.

3 Data and descriptive statistics

The empirical analysis is based on three main datasets, namely the Ugandan Census of
Agriculture (UCA), the Global Agro-Ecological Zones (GAEZ) and the Road Network of
Uganda, which will be used respectively to extract information on cropping choices across
the country, patterns of crop specific comparative advantage and market accessibility. In the
following, I provide a brief description of each of the data sources and explain how the main
variables are derived.

3.1 The Ugandan census of agriculture

The Ugandan census of Agriculture (UCA) is a micro level dataset providing accurate in-
formation on the economic activities of a large and nationally representative sample of
agricultural holdings. The survey refers to the 2008/09 agricultural year and originally in-
cludes 35,407 farms located in 3,557 enumeration areas spread throughout the 80 districts of
Uganda.11

The most relevant variable derived from this dataset is land use, which is available at the
village level. In particular, for each enumeration areas, the survey provides information on
the crop choices made by each respondent for both the second agricultural season of 2008 and
the first agricultural season of 2009. This allows me to compute the village specific fraction
of land devoted to each of the nine major crops included in the analysis, which overall covers
more than 90 percent of the agricultural land. Since all the plots are measured through GPS,
the resulting measure is very accurate.

Most of the villages sampled were also geolocated. Thus, it is possible to combine the
information contained in the UCA with spatial datasets. Unfortunately, coordinates were
not available for around 10 percent of the enumeration areas in the original sample. These
villages are therefore not included in the econometric analysis since no reliable information on
their transportation costs and land specific crop specific land suitability could be obtained.
Additionally, I remove the enumeration areas with low response rate (≤ 40 percent) and

10Unfortunately, I do not have data on households’ consumption and therefore I cannot directly test this
hypothesis.

11Enumeration areas are survey specific localities which are roughly the same size as a village (for rural
areas) or a parish (for urban areas). In the following, I will use the terms enumeration area and village
interchangeably. The sampling follows the pre-2006 reform district borders.
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those where the crops under analysis cover a relatively small fraction of the agricultural area
(≤ 60 percent) as the resulting figures on land use might not be informative on the actual
crop choices made in the area. This reduces the sample to 2,941 villages.12

3.2 Crop specific land suitability and comparative advantage

Information on crop specific land suitability is taken from the GAEZ dataset, created by
FAO. It consists of a sophisticated agronomic model, which on the basis of information on
climate patterns and of terrain and soil characteristics, returns the expected yield per hectare
for a number of crops.13 Since the dataset is defined on a very granular scale (5 Arc-minutes,
i.e. 10 square kilometres cells at the Equator), it is able to capture differences in crop specific
productivity even within small areas. Crucially, GAEZ is estimated for the nine most widely
grown crops in Uganda (see Table 1). Therefore, it allows to define a very accurate picture
of the underlying structure of the agricultural comparative advantage.

Since the model features two crops only, the relative crop suitability was fully captured by
the ratio of land productivity of food and cash crop F

C
. The most obvious way to generalise

this to account for more than two crops is to compare the expected yield of each crop to
some average fertility measure. Formally, for each crop c in village v, I define an index of
comparative advantage for c as:

cadvcv =
deccv∑

c dec
c
v ∗ sharec

(8)

where deccv is the decile of land suitability for crop c in village v (obtained from GAEZ),
and sharec is the overall fraction of land devoted to crop c in the sample.14 In line with the
concept of comparative advantage, this index is constructed in such a way that it can take
up a lower value in areas that experience absolute advantage in the production of a crop. For
example, a village that is located in an area which is very favourable for the production of
all crops (e.g. lies in the highest decile of the suitability distribution of each crop) will have
a index equal to 1 for all crops, while a village that has an average productivity for c and
lower than average for the others, will have an index ≥ 1 for crop c.

The distributions and the descriptive statistics of the resulting indexes are shown in Figure 3
and in Table 2.15 For each crop, the mean is very close to 1 and the distribution is rather

12This represents 83 percent of the original villages sampled and 87 percent of the holdings. The results are
robust if all the geolocated EAs are considered and/or when attributing to non geolocated EAs the median
values of crop suitability and market access of other observations in the same district.

13The estimates are available for a number of different combinations of input used in the agricultural
production (low, intermediate or high) and the irrigation methods. I consider a low input level and rain fed
irrigation, which represent by far the most common scenario in Sub Saharan Africa.

14I weight the contribution of each crop by its acreage in the full sample, so that having relatively high/low
productivity for a marginal crop has a lower impact on the measure of comparative advantage. By doing
so, the findings are more robust to the number of crops considered as removing or adding a relatively less
commonly grown crops would have a lower impact on the resulting index.

15Plots and descriptive statistics are based on the 2,941 observations corresponding to all the villages
included in the final sample.
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Table 2: Distribution of comparative advantage indexes

Mean Median St. Dev Min Max

Maize 0.95 0.91 0.36 0.22 2.70
Cassava 0.93 0.98 0.32 0.15 2.59
Matoke 0.97 0.96 0.40 0.20 2.27
Beans 0.96 0.95 0.38 0.19 3.23
Swpot 0.94 0.97 0.33 0.17 3.25
Sorghum 1.04 0.89 0.61 0.16 3.39
Coffee 0.96 0.94 0.41 0.14 3.54
Grnut 0.93 0.99 0.45 0.11 4.05
Millet 0.96 0.99 0.44 0.12 3.70

concentrated around it. This suggests that there are a number of agro-climatic factors that
are either favourable or detrimental to agricultural production in general and therefore crops’
expected yields are generally positively correlated.16

Interestingly, the distributions of these indexes tend to have longer right tails. This is not
surprising as changes in the index where the values are below 1 capture larger differences
in relative crop suitability. As an example, while an index of 0.5 for crop c implies that on
average land is twice as suitable for the other crops (with higher weights attached to more
common crops) than for c, while an index of 1.5 indicates that crop c is only 50 percent more
suitable than the others. Additionally, the values taken up by the index are mechanically
affected by the relative share of the crop the measure is computed for. This reflects the fact
that when computing the index for a crop c, the denominator is a weighted average of all
the crops, including c itself, and if c is given a higher weight due to its high acreage, the
difference between numerator and denominator will be reduced. Accordingly, the range of
values taken by the index is narrower for more widely grown crops like maize and matoke
than for more marginal crops like groundnut and millet.

These features of the measure imply that, depending on the value taken by the index and
on the crop considered, a unit change can capture different changes in the crop’s relative
productivity. This serves as a warning for the interpretation of the results and on the way
the index should be entered in regression models.

Finally, Table 3 displays the cross correlation matrix for the indexes of comparative advan-
tage of the nine crops included in the analysis. Since the indexes capture the relative crop
suitability, it is not surprising that the majority of the correlation coefficients are negative,
indicating that villages facing comparatively better agronomic conditions for a crop tend to
have symmetrically relatively lower suitability for the others. However, this is not the case
for crops that are very similar and as such require analogous soil and climatic conditions to
grow like cassava and sweet potatoes or maize and sorghum.

16In fact, when computing the correlation coefficients across crops, they are virtually all positive. The
highest value is 0.84 (beans and maize), while the the lowest is -0.10 (sorghum and matoke).
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Figure 3: Distribution of comparative advantage (Kernel density)
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3.3 Transportation costs and market accessibility

While existing studies define regional markets on the basis of administrative boundaries (i.e.
US counties in Costinot and Donaldson (2016) or Peruvian provinces in Sotelo (2019)), I
adopt a different approach which allows me to determine the extension of local markets and
at the same time define a village specific market access based on the estimated transportation
costs. The latter will be defined as a function of the existing road network.

In order to do so, I divide the whole country in cells of one square kilometre, and for each
of them compute the crossing time, as a function of whether there is a road, which type of

Table 3: Cross correlation of indexes of comparative advantage

Maize Cassava Matoke Beans Spot Sorghum Coffee Gnut Millet
Maize 1.000
Cassava -0.797 1.000
Matoke -0.548 0.397 1.000
Beans 0.704 -0.752 -0.613 1.000
Spot -0.738 0.741 0.221 -0.661 1.000
Sorghum 0.660 -0.757 -0.606 0.671 -0.513 1.000
Coffee -0.264 0.271 0.256 -0.363 0.047 -0.466 1.000
Gnut -0.463 0.262 -0.145 -0.275 0.342 -0.306 0.026 1.000
Millet -0.496 0.301 -0.132 -0.257 0.456 -0.136 -0.306 0.650 1.000
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Figure 4: Road network and market access

road it is, the terrain roughness and land cover. Information on the road network and its
characteristics come from the map provided by Ubos (2015) and depicted in Figure 4 which
refer to the transport infrastructure available in 2010. To calculate crossing times, I assume
that the quickest mean of transportation available is used i.e. cars for motorways and that
the speed is a function of the type of road. Specifically, I assume 70 km/h for primary roads,
50 for secondary, 20 for tertiary and 10 for the residential ones. For cells without roads, the
speed is a function of the terrain roughness (from 4 km/h for flat to 2 for very steep) and of
the land cover (correction coefficient of 1.5 for forests and no transit for inland water bodies
and natural reserves). Then, for each cell, I run an algorithm returning the time to reach
a main city using the fastest route, where I consider as main city any town with more than
30,000 inhabitants.17

As the villages in the sample are geolocated, I am able to match each of them to the cor-
responding cell’s estimated travel time, that represents my proxy for market accessibility.
Additionally, this procedure allows me to define regional markets as the set of cells that,
given the existing transportation network, are better connected to a given major city.18 As
a result, a “catchment zone” is assigned to each of the 32 cities, each representing a regional
market. Contrarily to the definitions based on administrative boundaries, this procedure re-
lies on the existing transportation network and therefore it is more likely to capture the real
subdivision into market areas. Figure 4 provides a graphical representation of this partition
and of the market access index.

17I add to this set of city Kaabong in the North Eastern region of the country as it nearly meets the
threshold of 30,000 and there is a cluster of enumeration areas in its proximity that are otherwise quite far
from any other city. Changing the threshold to similar values do not affect the analysis in significant way.

18As there are a number of cities with more than 30,000 inhabitants in some areas, such as the surroundings
of Jinja and the capital Kampala, in these instances I do not define a market for each of those cities but I
rather consider only the most important city among them when defining the boundaries of a regional market.
The implicit assumption made is that these markets are perfectly integrated due to their proximity. However,
also the cities that do not define a regional markets are considered in the computation of the market access
index.
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Table 4: Within market area variability in land suitability and comparative advantage

Suitability
C.adv C.adv
Index Quintiles

Maize 67.71 71.58 78.50
Cassava 49.75 65.50 61.58
Matoke 42.99 61.36 60.93
Beans 63.40 62.50 72.51
Swpot 46.08 76.16 68.46
Sorghum 56.91 53.81 54.08
Coffee 47.66 71.42 64.90
Grnuts 48.34 70.06 68.71
Millet 43.87 61.10 59.30

Figures are obtained as 1-R2 computed by regress-

ing land suitability and comparative advantage (in-

dex and quintiles) on a full set of market fixed ef-

fects.

A potential drawback of this methodology is that the estimated travel times are rather
sensitive to the assumptions made in terms of cells’ crossing time. It is worth pointing out
that rather than trying to compute a realistic travel time, the procedure derives a more
general market connectivity index based on the existing road network. For this reason, I
enter them in the regression models as quintiles which are presumably less affected by the
underlying assumptions on road speed. Moreover, this reduces the statistical noise caused
by potential errors in the geolocation procedure as quintiles display lower variations among
neighbouring cells.

3.4 Heterogeneity of crop suitability and comparative advantage
within market areas

The main contribution of this paper is the identification of deviations from the patterns of
comparative advantage observed at the market area level, as opposed to the ones caused by
lack of integration across regional markets. For future reference, it is useful to provide some
estimates of the variation of land suitability and the comparative advantage index within the
market zones defined in the previous subsection. Indeed, if variation in land suitability were
solely the reflection of differences in agro-climatic conditions across markets, there would be
no reason to be concerned about the spatial distribution of crops within market areas.

The results presented in Table 4 clearly indicate that this is not the case. Indeed, a large
part of the variation in crop specific land suitability, as well the indexes of comparative
advantage defined in Equation 8, seems to be driven by differences within villages located in
the same market zones. The same is true when considering the variation in the quintile of the
comparative advantage indexes, which will be used in some empirical specifications.
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These findings highlight the importance of understanding the determinants of crop choice
also within market zones, as well as the frictions that might cause the cropping patterns to
deviate from the optimal ones given the underlying system of comparative advantage. In
the next section, I compute the efficiency gains in terms of increased value of production
that could be reached by reallocating crops on the basis of their relative suitability, both
across the whole sample and within market areas. This exercise will provide an idea of the
magnitude of the existing misallocation in cropping patterns and the extent to which it is
brought about by inefficiencies within the 32 local market zones identified.

4 Efficiency gains from crops reallocation

In order to compute the potential gains from an efficient spatial reallocation of crops, I
follow the steps suggested by Adamopoulos and Restuccia (2018). Intuitively, the procedure
aims to compute the difference between the actual value of aggregate output and the one
potentially achievable just by reallocating crops to the relatively most productive locations
without changing the aggregate land shares nor the amount of agricultural land in each
location. Formally, the total value of production obtained from efficiently reallocating crops
c ∈ C across all the villages v ∈ V is computed as:

Y E = max
lcv

∑
c∈C

∑
v∈V

pcẑcvlcv (9)

Where ẑcv is the expected yield estimated by the GAEZ model for crop c in village v, lcv is
the quantity of land used for crop c in village v and pc is the price of crop c.19

Subject to: ∑
c∈C

lcv ≤ Lv ∀ v ∈ V (10a)∑
v∈V

lcv ≤ Lc ∀ c ∈ C (10b)

lcv ≥ 0 ∀c ∈ C , ∀ v ∈ V (10c)

Where the first constraint imposes the aggregate share of land devoted to each crop remains
fixed, the second one imposes that the amount of farm land for each village does not change,
while the last one is a non negativity constraint.20

Y E can therefore be estimated simply by solving a linear programming problem. The com-
parison between the resulting value and the actual value of the production Y A indicates the

19I use ẑ as opposed to the actual yields since I am only interested in the efficiency of crop distribution and
I do not focus on production. The prices are obtained as the median market value of each crop according to
the LSMS and they are the same used to generate the statistics in Table 1.

20The constraints guarantee that in the efficient counterfactual only crop distribution is altered, whereas
the aggregate share of land devoted to each crop and agricultural land farmed in every location are the
same. This implies that every difference between the actual output value and the counterfactual is entirely
attributable to the inefficient geographical distribution of the crops.
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level of misallocation in land use. I find that the ratio Y E

Y A takes value 1.33, which suggests
that by reallocating crops according to their relative productivity across all the villages in
the sample would increase the total value of the production by one third.21

In order to estimate how much of the gap in productivity is accounted for by misallocation
within the 32 market zones identified in the previous section, I generate another counterfac-
tual Y M , which represents the total value of the production that would be achieved if crops
were reallocated efficiently only across villages located in the same market zones. Formally,
for each market m ∈M , I solve the maximisation problem:

Y m = max
lcv

∑
c∈C

∑
v∈Vm

pcẑcvlcv (11)

subject to: ∑
c∈C

lcv ≤ Lmv ∀ v ∈ V m (12a)∑
v∈Vm

lcv ≤ Lmc ∀ c ∈ C (12b)

lcv ≥ 0 ∀c ∈ C , ∀ v ∈ V m (12c)

Where V m is the set of villages v located in the market area m.

In practice, the output (value) maximising crop distribution is calculated separately for each
of the 32 market zones, holding constant the market specific land shares of each crop. In
order to compute these gains, I assume that crop prices are not affected by the geographical
reallocation of crops and the resulting differences in quantities produced. This mirrors the
structure of the model where regional market prices are exogenously fixed and not affected by
crop choice and production. The achievable increase in the value of output varies significantly
across the 32 markets, ranging from 5.01 percent for the lowest to 61.05 for the highest, with
an average of 21.28 percent.

I can then use the solutions to these maximisation problems to estimate:

Y M =
∑
m∈M

Y m (13)

the ratio YM

Y A is informative on the relative importance of within market crop misallocation.
In particular, a value close to 1 would indicate that all the misallocation observed is due
to inefficiencies across markets, while a value close to Y E

Y A would suggest that most of the
potential gains could be achieved just by reallocating crops within villages in the same market
zone. In this case, the ratio takes value 1.17. This implies that more than half of the potential

21Note that this estimate is higher than the one by Adamopoulos and Restuccia (2018), as their corre-
sponding figure for Uganda is around 19%. This difference is realistically due to the fact that I am using
micro level data as opposed to projections. However, the order of magnitude of the estimates is reassuringly
similar.

19



gains from reallocation could be achieved just by changing the cropping patterns within the
32 market areas identified in the previous section.

These descriptive findings suggest that although regional markets seem to be far from in-
tegrated, also the cropping patterns within each market zone appear to be inefficient and
to play as important a role in determining the aggregate spatial misallocation. In the next
section, I will examine the possibility that these inefficiencies are driven by differences in
market accessibility across production units operating in the same market.

5 Empirical Results

This section presents the results of the main empirical analysis. I combine the information on
land use, comparative advantage and market access obtained as explained in Section 3.3 to
study to which extent the misallocation in land use patterns is due to transportation costs. In
particular, I will test the two hypotheses derived from the model. Namely, whether whether
transportation costs, controlling for comparative advantage, have a direct impact on crop
choices, leading farmers in more remote areas to grow crops with lower market value and/
or easier to store and transport (like cereals and grains), and if the impact of comparative
advantage is mitigated or even reversed for producers with poor access to markets.

5.1 Responsiveness to comparative advantage

First of all, it can be useful to estimate the relationship between the village level share of
land devoted to each crop and its relative productivity, abstracting for the time being from
the transportation costs. In practice, I compute the following regression:

Land sharecv = β1comparative advantagecv +X ′cvγ + µm (14)

for each crop c. I use a left censored tobit model, in consideration of the the non trivial
number of zeros in the dependent variable. Since I have identified significant variation in
the measure of comparative advantage both within and across market zones, the regression
is estimated both with and without the market fixed effects µ in order to obtain results that
indicate the responsiveness of land use both within and across local markets. The dependent
variable is the fraction of agricultural land devoted to crop c in village v expressed as a num-
ber between 0 and 100. The explanatory variable of interest is the comparative advantage
expressed either as an index (see Equation 8) or as the quintiles in the relative index distri-
bution. X includes a number of village specific controls; namely the overall land fertility for
generic agricultural purposes, the number of farms in the enumeration area and the average
holding size.22 Controlling for general land fertility is particularly crucial as agricultural po-
tential might be one of the determinants driving the endogenous development of transport
infrastructure and as such represent a potential confounding factor for the analysis.

22Fertility is computed as
∑

c dec
c
v ∗ sharec, which is also the denominator of the comparative advantage

formula and is a weighted average of the decile in the distribution of land suitability for each crop, where
the weights are the land shares of the crop in the sample. It is worth pointing out that the results are not
affected by the exclusion of these controls or by removing any subset of them.
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Table 5: Crop specific responsiveness to comparative advantage

Index Quintiles

Maize -4.09*** -3.08*** -1.14*** -0.83***
(0.83) (0.76) (0.21) (0.19)

Cassava 10.64*** 2.22*** 1.42*** 0.24
(0.91) (0.84) (0.21) (0.20)

Matoke 18.27*** 3.34*** 5.30*** 1.33***
(1.34) (1.09) (0.37) (0.32)

Beans 1.41** 0.39 0.30* -0.26
(0.55) (0.66) (0.15) (0.17)

Swpot 2.31*** 1.00** 0.42*** 0.13
(0.48) (0.46) (0.12) (0.11)

Sorghum 5.77*** 1.23*** 4.12*** 0.92***
(0.48) (0.48) (0.23) (0.19)

Coffee 9.12*** 3.08*** 2.85*** 1.38***
(0.87) (0.80) (0.27) (0.31)

Grnut 5.73*** 1.68*** 2.28*** 1.03***
(0.45) (0.43) (0.11) (0.17)

Millet 7.27*** 2.61*** 2.41*** 0.83***
(0.43) (0.48) (0.13) (0.16)

Market FE No Yes No Yes

*** p < 0.01, ** p < 0.05, * p < 0.1, robust standard errors in

parentheses. The figures represent the estimated impact of a unit

change in the comparative advantage index (or quintile) on the

percentage of land devoted to the same crop (from 0 to 100). The

estimates are obtained using a tobit model left censored at 0.

The estimates of β1 are displayed in Table 5 and show that, with the sole yet notable exception
of maize, the share of land devoted to each crop correlates positively to the corresponding
relative productivity. This is true whether or not market level fixed effects are included.
Given the above mentioned issues in the interpretation of the results based on the continuous
index, the magnitude of these effects is best appreciated by looking at the results based on the
quintile distribution. According to these findings, when market fixed effects are not included,
moving one quintile up in the distribution of crop suitability increases significantly the share
of land devoted to each crop. The impact ranges from 5.30 percentage point for matoke to
only 0.42 for sweet potatoes. The results are qualitatively similar when using the index. In
the case of maize, the converse is true, as moving up a quintile reduces the share of land
covered by it goes down by around 1 percentage point both with and without market zone
fixed effects.
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The differences in magnitudes between the models with and without market level fixed effects
are otherwise rather pronounced, and in some instances the point estimates of the former are
not statistically significant. This is particularly notable for some crops like matoke, cassava
and millet, where the differences are five-fold to threefold. As shown in Table 4, there is
sizeable variation in the relative productivity of crops even within local markets. Thus, the
relatively low (and sometimes insignificant) coefficients of the models with fixed effects cannot
be entirely attributed to low variation in the measures of comparative advantage. Rather,
they indicate that, unlike what is assumed in Costinot and Donaldson (2016) and Sotelo
(2019), there are considerable departures from the efficient crop distribution also within
domestic local markets.23 This conclusion corroborates the findings of the previous section,
proving the existence of sizeable productivity gains from geographical redistribution of land
use also within the 32 market areas.

Thus, the aggregate analysis shows that generally farmers are not particularly responsive to
the underlying system of comparative advantage, especially when considering the geograph-
ical distribution of crops within each market zone. Interestingly, in the case of maize (the
most important crop by acreage), there is a negative relationship between land shares and
relative crop productivity, which is one of the key prediction of the model for high levels of
transportation costs. In the following section, I include my measure of transportation cost
to examine their impact on land use decisions.

5.2 Market accessibility and cropping patterns

According to the theoretical framework, the first order impact of low market accessibility is
a reduction of the area devoted to cash crops. As argued in section 3.2.3, this prediction
can be generalised to food crops with high market value but less easy to transport due to
their perishability or bulkiness. While this result is widely acknowledged by the literature,
existing studies have typically overlooked the fact that land is heterogeneous in terms of crop
specific suitability (Stifel and Minten 2008). In the following, this is done by including the
index of comparative advantage.

Additionally, transportation costs can reduce farmers’ responsiveness to comparative advan-
tage by incentivising subsistence farming. More specifically, farmers operating in remote
areas might optimally use a larger share of land to grow relatively less suitable crops just to
meet their consumption need and avoid the high costs they would sustain if they were to buy
the same crops at the markets. As shown in Figure 1, the higher the transportation costs
are, the lower is the responsiveness of production choices to the structure of comparative
advantage of each crop.

23It is however worth stressing that the local markets considered by Costinot and Donaldson (2016) are
much smaller (US counties) than the ones considered here, which makes the assumption of efficient crop
distribution more credible and justifies the prevalent interest in the integration across rather than within
them.
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In order to identify both these effects, the following village level regression is estimated:

Land sharecv = β1comparative advantagev + β2time to marketcv

+ β3comparative advantagev ∗ time to marketcv +X ′cvγ + µm
(15)

Where X represents the same set of controls as in the previous regressions and I capture
market accessibility as the quintile in the distribution of the estimated time to reach the
major market city.24

The coefficient of β2 captures the direct impact of transportation costs, which I expect to be
crop specific. In particular, it should take on positive values for food crops which are easy to
transport, while it should be negative for cash crops as well as food crops with high market
value but which are hard to store and move to the markets in light of their perishability and
bulkiness.

The mitigation (and potential reversal) of the supply response to comparative advantage is
instead identified through the interaction term between crop specific comparative advantage
and transportation costs. In this case, I expect the coefficient to be negative as the effect
does not depend on crops’ characteristics.25

Tables 6 and 7 present the estimates of coefficients β1, β2 (with and without interaction term)
and β3 for each of the nine crops considered, where comparative advantage are either captured
by the index described in Equation 8 or by the quintile of the corresponding distribution.
Due to the above mentioned issues with the interpretation of a linear change in the index,
most of the discussion will be focused on the model based on the quintiles (Table 6). For
most of the crops, β2 has the expected signs. Low value staple crops like beans, sorghum and
millet are shown to be more commonly grown in remote areas, while the only “pure” cash
crop: coffee, along with high value perishable food crops like sweet potatoes and matoke are
less so. The coefficients are insignificant only for cassava and groundnuts. In the first case,
this is hardly a surprise, as cassava is typically grown for reasons that are not captured by the
model and do not necessarily correlate with market access, such as its resistance to droughts
and low labour intensive production methods. As for groundnuts, according to Table 1, they
are a low value crop mostly grown for consumption, similar to beans and millet across these
two dimensions. On these basis, it would be plausible to expect a positive sign. The point
estimate is indeed positive but not statistically different from zero. In terms of magnitude,
on first inspection the coefficients appear to be quite small ranging from 0.39 for millet to
-1.27 for matoke. They are however economically significant if considering the relatively low
mean variable of the dependent variable (namely, the percentage of land devoted to each
crop).

Adding the interaction term allows me to test whether transportation costs reduce farmers’
responsiveness to comparative advantage, as suggested by the model. I find that β3 is negative
in seven out of nine cases, and statistically significant for matoke, beans, groundnut and millet

24As in the previous case, I use a left censored left probit model in light of the non trivial share of 0 values.
25As it is straightforward in the two crops example, a reduction in the farmers’ responsiveness to food

crop’s comparative advantage mechanically implies that the responsiveness to cash crop is symmetrically
reduced.
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when considering the quintiles. When I use the indexes of comparative advantage as main
explanatory variable, the sign of the point estimates is negative only for four out of nine
crops, but they are always statistically significant, while reassuringly they never are when
they take on a positive value. Overall, β3 is negative and significant in at least one of the
two specifications for five crops and in both for three and it is never positive and statistically
significant.

The fact that these findings are not as clear cut as the model suggests is not surprising.
Indeed, as long as farmers are flexible in their consumption decisions and more food crops are
available, they might opt to produce and consume crops their land is relatively more suitable
for and choose not to consume crops that cannot be easily grown given the agro-climatic
conditions faced. However, the fact that the estimates are never positive and significant and
that are mostly negative in the quintile specification indicates that at least to some extent,
the mechanism identified by the model is at play.

In order to provide some additional empirical support to the theoretical framework, I also
examine the impact of higher transportation costs on a number of related outcomes such as
percentage of output self consumed, land concentration and the estimated revenue of the crop
choice as a fraction of the revenue maximising land use. According to the stylised two-crop
model, farmers in more remote areas should be more likely to consume (or less likely to sell)
the crop they grow, depart more markedly from the revenue maximizing crop mix and have
lower values of land concentration.

I test whether this is the case by estimating a set of simple village level regressions taking
this form:

Yv = β1time to marketv +X ′cvγ + µm (16)

where X contains the usual controls plus nine variables indicating the village specific suit-
ability for each crop.26

The estimates are shown in Table 8. As expected, farmers located in more isolated areas
are more likely to produce for self-consumption. Although the percentage of the output
(where different crops are aggregated using their output value) is generally quite large (more
than sixty percent on average), the estimates suggest that the average differential between
enumeration areas in the best and in the worst connected quintile is rather sizeable, being
close to 5 percentage points. In line with this, the findings also show (columns 5 and 6) that
farmers with lower market accessibility tend to depart more from the profit maximising crop
mix, suggesting that their production decisions are driven also by other considerations like
the perishability of the crops or their value as consumption goods. Both these results are
robust to the inclusion of market zone fixed effects.

On the other hand, the results depart from the model’s prediction with regard to the land
concentration index. Indeed, as shown in Figure 1, the higher transportation costs are, the
less specialized the production is. In particular, when ∆ is equal to zero, farmers always fully

26This new set of control is especially fundamental in estimating the regression having as dependent variable
the percentage of potential revenue as the denominator (maximum potential revenue) is largely dependent
on the suitability of crops with high market value (and typically of coffee).
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specialize in the production of the most profitable crop, while for high ∆s full specialization
occurs only when the comparative advantage for either crop is very pronounced. According
to these findings however, specialization (captured by the Herfindahl index of land concentra-
tion) is higher in more remote villages, although the relation is only statistically significant in
the specification without market fixed effects. A possible explanation for this finding is that,
as suggested by the high average levels of self consumption, farmers do not fully specialise in
cash crops even where the transportation costs are low. Thus, while better connected farmers
grow a mix of cash and food crops, those who face higher barrier in accessing markets might
only specialise in production of food crops which are most suitable given the agro-climatic
conditions they face. This is also in line with the results presented in Table 6 which indicates
that although transportation costs reduce farmers’ responsiveness to comparative advantage,
the impact is less pronounced than what the two-crop model suggests.
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Table 6: Transportation crop and crop choice (quintile specification)

Time to market C.adv Interaction R2

Maize 0.43*** -0.77*** 0.37
[av = 16.9] 0.82** -0.37 -0.13 0.38

Cassava 0.03 0.23 0.45
[av = 15.5] 0.05 0.25 0.01 0.46

Matoke -1.27*** 1.46*** 0.68
[av = 16.6] 0.09 2.78*** -0.44*** 0.68

Beans 0.48*** 0.28* 0.34
[av = 10.6] 1.11*** 0.91*** -0.21*** 0.34

Spot -0.57*** 0.17* 0.30
[av = 7.8] -0.92*** -0.18 0.12 0.31

Sorghum 0.91*** 0.99*** 0.62
[av = 5.8] 0.73*** 0.81 0.06 0.62

Coffee -0.94*** 1.38*** 0.37
[av = 6.9] -0.68*** 1.61*** -0.08 0.38

Gnut 0.12 0.96*** 0.35
[av = 5.2] 0.60*** 1.46*** -0.16*** 0.37

Millet 0.39*** 0.71*** 0.32
[av = 3.8] 1.29*** 1.60*** -0.29*** 0.33

*** p < 0.01, ** p < 0.05, * p < 0.1, robust standard errors in parenthe-

ses. The controls included are land fertility, average farm size, number

of farms. The figures represent the estimated impact of a unit change in

the comparative advantage (or transportation costs) quintile on the per-

centage of land devoted to the same crop (from 0 to 100). The estimates

are obtained using a tobit model left censored at 0. Square brackets in-

dicate the average share of land devoted to each crop.
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Table 7: Transportation crop and crop choice (index specification)

Time to market C.adv Interaction R2

Maize 0.42*** -2.74*** 0.32
[av = 16.9] -0.21 -4.69*** 0.66 0.32

Cassava 0.01 2.21*** 0.42
[av = 15.5] 0.39 0.93 0.43 0.43

Matoke -1.28*** 3.87*** 0.69
[av = 16.6] -0.25 6.99*** -1.04*** 0.70

Beans 0.48*** 0.43 0.31
[av = 10.6] 0.19 -0.48 0.30 0.32

Spot -0.58*** 1.24*** 0.33
[av = 7.8] -1.01*** -0.16 0.46 0.32

Sorghum 0.90*** 1.40*** 0.64
[av = 5.8] 1.25*** 2.33*** -0.32* 0.65

Coffee -0.92*** 3.05*** 0.38
[av = 6.9] -1.16*** 2.32*** 0.23 0.38

Gnut 0.14 1.57*** 0.35
[av = 5.2] 0.61*** 1.57*** -0.51*** 0.39

Millet 0.39*** 2.27*** 0.33
[av = 3.8] 1.33*** 5.06*** -0.93*** 0.36

*** p < 0.01, ** p < 0.05, * p < 0.1, robust standard errors in parenthe-

ses. The controls included are land fertility, average farm size, number

of farms. The figures represent the estimated impact of a unit change

in the transportation cost quintile (or comparative advantage index) on

the percentage of land devoted to the same crop (from 0 to 100). The

estimates are obtained using a tobit model left censored at 0. Square

brackets indicate the average share of land devoted to each crop.
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Table 8: Marketization and specialization

% self consumption Land concentration % potential revenue
(1) (2) (3) (4) (5) (6)

Time to market 1.185∗∗∗ 1.044∗∗∗ 0.445∗∗∗ 0.161 -0.522∗∗∗ -0.365∗∗

(0.30) (0.31) (0.16) (0.16) (0.16) (0.15)

Controls Yes Yes Yes Yes Yes Yes
Market FE No Yes No Yes No Yes
Mean Y 61.29 61.29 30.60 30.60 63.21 63.21
N 2,941 2,941 2,941 2,941 2,941 2,941
adj. R2 0.097 0.176 0.116 0.272 0.528 0.662

*** p < 0.01, ** p < 0.05, * p < 0.1, robust standard errors in parentheses. The controls included are

land fertility, average farm size, number of farms and a the (log) of each crop’s suitability expressed

in expected yields (tonnes per hectare) according to the GAEZ model. All dependent variables are

expressed on a scale from 0 to 100. % self consumption refers to the share of the output (value) pro-

duced that is self consumed, land concentration is an index computed as the sum of the square of

the shares of the land devoted to each crop (Herfindahl index) and % potential revenue represents

the ratio between the value of the expected yield and the maximum value obtainable given the soil

and climate characteristics (obtained combining LSMS price data to GAEZ expected yields).
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6 Conclusion

Transportation costs are known to have a negative impact on agricultural productivity, es-
pecially in developing countries where road networks and infrastructure are lacking. In fact,
they are considered to be one of the concurring causes of the disproportionately large scale of
the farming sector in poor economies (Adamopoulos 2011 Tombe 2015) and its backwardness
in terms of technology and input use (Gollin and Rogerson 2014).

Another way through which transportation costs shape agricultural activities is by affecting
farmers’ crop choices. Although the related literature is rather varied, two main strands/
perspectives can be identified. On the one hand, a number of studies on farm households’
decision making (Jayne 1994, Omamo 1998) have looked at the impact of transportation
costs in terms of reduction in farmers’ market access. These papers typically show that
when agricultural markets are missing or are costly to access, farmers tend to deviate from
profit maximizing land use and produce potentially lower valued crops for self consumption
purposes. On the other hand, some recent works (Costinot and Donaldson 2016, Adamopou-
los 2019, Sotelo 2019) have examined how transportation costs lead to scarce integration
across local domestic markets, causing inefficiencies in the spatial distribution of crops. In
particular, they show that by reducing frictions across regional markets, producers could
specialize in growing those crops which are most suited to the agro-climatic conditions they
face, increasing the aggregate output.

This paper shows that inefficiencies in cropping patterns do not only occur at the national
level (as typically assumed by the literature on domestic market frictions), but also within
more narrowly defined market areas. Combining data on farm level land use from the Ugan-
dan Census of Agriculture and on crop specific land suitability from the GAEZ agronomic
model, I find that aggregate output value could be increased by 33% just by reallocating
crops following the underlying structure of comparative advantage, and that more than half
of these gains could be achieved just by redistributing crops within 32 domestic markets. In
order to explain this, I develop a model where, unlike in Fafchamps (1992), Jayne (1994) and
Omamo (1998), farmers are heterogenous not only in their market access, but also in the
relative crop productivity. Combining these two dimensions shows that transportation costs
also cause deviations from the optimal crop spatial distribution across produces operating
within the same market area.

The empirical analysis corroborates this hypothesis. In particular, I show that farmers located
in areas with low market access not only devote systematically more land to the production
of low value food crops, but also that their cropping choices are less responsive to the agro-
climatic conditions they face. These findings suggest that investing in rural infrastructures
is as important as reducing frictions across regional markets to improve the efficiency in the
spatial distribution of agricultural production.
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